Intel® Debugger (IDB) Manual

Document Number: 306363-002US

Disclaimer and Legal Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S
TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not
intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear
facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

The software described in this document may contain software defects which may cause the product to
deviate from published specifications. Current characterized software defects are available on request.

This document as well as the software described in it is furnished under license and may only be used or
copied in accordance with the terms of the license. The information in this manual is furnished for
informational use only, is subject to change without notice, and should not be construed as a commitment
by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies
that may appear in this document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means without the express written consent of Intel
Corporation.

Developers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Improper use of reserved or undefined features or instructions may cause
unpredictable behavior or failure in developer's software code when running on an Intel processor. Intel
reserves these features or instructions for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from their unauthorized use.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino logo, Chips, Core Inside, Dialogic,
EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP, Intel, Intel logo, Intel386, Intel486,
Intel740, InteIDX2, IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel.
Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep,
Intel StrataFlash, Intel Viiv, Intel XScale, IPLink, Itanium, Itanium Inside, MCS, MMX, MMX logo,
Optimizer logo, OverDrive, Paragon, PDCharm, Pentium, Pentium Il Xeon, Pentium IIl Xeon,
Performance at Your Command, Pentium Inside, skoool, Sound Mark, The Computer Inside., The
Journey Inside, VTune, Xeon, Xeon Inside and Xircom are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.
Copyright (C) 2002-20086, Intel Corporation.

Portions Copyright (C) 2001, Hewlett-Packard Development Company, L.P.

Intel(R) Debugger (IDB) Manual

Table Of Contents

Disclaimer and Legal INfOrmMationccooi oo e e e e e iii
Introduction to INtel® Debugger (IDB)........ccoiiiiiiiiii et e e e e e e e e e e 1
Obtaining an INStallation Kit.............couuiiiiii e e e e e e e e e eeaens 1
ADOUL THIS DOCUMENTeeiiiiiiee ettt e e et et e e e e e e e et e e e e e e e b e e e e e e e e ennnnees 2
(@ (0= o171 1o o TR 2
INTENAEA AUGIENCE ...ttt e e e e e e e e s e e e e e e e e as 2
NOLAtION CONVENTIONS ...ceiiiiiiiiiiiie et e e et e e e e e s r et e e e e e e e e e e e e e e e 2
What's NeW iN thiS REIASEc.euiiiiiieiii et e e e e neees 3
Reporting Problems ... 4
LAY = U (0 TN =T 1o 4
Related PUBICALIONSuuiiiiiiiiiii e et e e e e e e e e s nneees 4
Part I. A Quick Introduction to Using the Intel® DebUJQET.........couviiiiiiiiiiiiiiiiceeeee e 5
About Using the Intel® Debugger. A Quick INtroduction.............ccccccvvvvviiiiiieeee e, 5
Making Simple Use of the Debugger. OVEIVIEWuueiiiiiiiiiiiiiiiiiieeee e 5
Preparing a Program for Debugging. Simple Debuggingcccccviiiiiiiieiiiiiiiiiiiieeee e 6
Starting the Debugger. SImple DeBUQGQINGuvviiiiiiiiiiiiiiiieee e 6
Entering Debugger COMMANGSuuuiiiuiiiiiiiiiiiieiiiieiieeeen e 9
Scripting or Repeating Previous Commands. Simple Debuggingcccccceeveiiiiiiiiiiiiiincnnnns 9
Context for Executing CommandScooooeiiiiii i 10
Running a Program Under Debugger CONLIOluuvuveiiuuiiiiiiiiiiiiiiiiieinesnnennnsnnnnnnnnnnn.. 10
Pausing the Process at the ProbIlemeuiiiiiiiiii e 11
EXamining the PauSEd PrOCESS.......uuuuuiiiiiiiiiii s a e 13

Table Of Contents

Looking at the Source Files. Simple Debugging.........cccccooviiiiiiiiiii e, 14
Looking at the Threads. Simple Debugging........coovvriiiiiii e 15
Looking at the Call Stack. Simple Debugging.........couuuiiiii e e 17
Looking at the Data. Simple Debuggingccoooo e 18
Looking at the Signal STALEcovi i e 18
Looking at the Generated Code. Simple Debugging ... 19
LOOKING @t the REQISTEIS ...ttt eaeeeas 20
Continuing Execution of the Process. Simple Debuggingccccveviieeeiiiiiiiiiiiieeeeeeee 22
Snapshots as an UnNdo MECHANISIM ... 26
Part Il. A Guide to Using the Intel® Debugger...........cooo i 29
A Guide to Using the INtel® DeDUQGQEToovviiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 29
Preparing a Program for Debugging. Expert Debugging. OVerviewccccccvveveneennnnnnns 29
Preparing YOUr SOUICE COUE........uuiiiiiiiiiiiiiiie ettt e e et e e e e e s e e e e e e e e anees 29
Preparing the Compiler and Linker ENVIrONMENT............ouviiiiiiiiiiiiieee e 30
Starting the Debugger. Expert Debugging. OVErVIEWccooeeeieeeiiiieeeeeeeeeeeeeee e, 30
Starting the Debugger from a Command LiNEcooiiiiiiiiiiiiiieeee e 30
(D129 Qo goTo [=3o] o] 1T0] o - TP PP OO POPPPPPPPPPPN 33
GDB MOUE OPLIONS ... —————— 35
Starting the Debugger USING EMACS™ ... 35
Running IDB in Default (DBX) MOEuuuuuiuiiiiii e 36
RUNNING IDB IN GDB MOGE.......uuiiiiii e e e 37
Starting the Debugger Using DDD* ... 38
Starting the Debugger Using ECHPSE*ccoov oo 38
Starting ECHPSE™ ..o 39

Intel(R) Debugger (IDB) Manual

Vi

Debugging with the Intel® Debugger in ECHPSE*ciiiiiiiiieci e 41
(=Y lo TaTo BRI I=T o 10 e To |1 o TS T=ES1 1 (o] o 45
LT 1] o T o 11 | o 46
Giving Commands to the Debugger. OVEIVIEWccoevvvieiiiiiiiieeeeeeeeeiies e e e e e e eeeniin e e 46
Debugger's Command Processing Structure. Expert Debugging..........ccoovvvviiiiiiiieeeeennnnne 47
Interrupting a Debugger ACHONoooiiiiiiieeee e 48
Entering and Editing Command LINESu i 48
History Replacement Of the LiN@...... e 48
Alias Expansion of the Line (DBX MOAE ONIY)coiviiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeee e 50
Environment Variable EXPanSION..... ... e a e e e e e e e 51
Syntax Of COMMEANGS ... 51
Lexical Elements Of COMMEANTScoooiiiiiiiiiiiiiee et e e 52
Grammar Of COMMENTSoooiiiiiiiiiii it e e e e st r e e e e e e s s eeeaeeas 52
Categories Of COMMEANTSoiiiiiii e e e e e e e e s r e e aeeeas 53
Keywords Within COMMENTS.........oiiiiiiiiiiiiiie et e e e e e s aanees 54
Using Braces to Make a Composite COMMANGc.uuiiiiiiiieeiiiiiiie e 55
Conditionalizing Command EXECULIONuuuiiiiiieeiiiiiiie e e e e 55
(1T 01U Lo To T G 2= T4 = 1] T R 57
Scripting or Repeating Previous Commands. Expert Debuggingccccoeeeeiieeiiieen, 60
Recording INPUL and OUEPUL.........uuuueeiieei e n s s e e e e e e e e e e 61
Viewing the Command HiSTOIYoiiiiiiiiiiiiiiiiiiieeiiiieeieeeseeeseese e aaeeeeeseeseeseseeereeesererrrnnnnes 64
Defining Aliases (DBX MOAE ONIY)......uuuuiuuiiiiiiiiiiiiiiiiiiiiiii e 64
Executing Shell COMMANASuuuiiiii e 65
Invoking Your Editor (DBX MOAE ONIY)ovviiiiiiiiiiieeiieiiieeieeeeieeveeesseesveesvsassasssesssesssessnnnnnnne 66

Table Of Contents

Context for Executing COMMEANGASciiiiiiiiiiiiiie et e e e e e e e e eeennna e e e e e eeeees 67
Loading an EXecutable File ... 67
Creating @ NEW PrOCESSuuuii it e e e s e e e e et e e e e e e e e e e ettt s e e e e e eeeasana e e eaeeeennes 67
Attaching the Debugger to an EXiSting PrOCESSccuuiiiiiii i eeeaean 67
MUIIPIE PrOCESSES. .. ettt e 67
Multiple Call Frames, Threads, and SOUICES............uuuuuiuuuiiiiiiiiiiiiii e 68
Running the Program Under Debugger CONLIOluuuuuueimmmiiiiiiiiiiiiiiiiiennnees 68
Running the Program in the DeDUGQET e 68
Attaching to a RUNNING Program..........oooiiiiiiiiiiiiiieieeieeeeeeeeeeeeeeeee ettt eeeeees 69
The 1load, unload, and f£ile COMMANGSccoiiiiiiiiiiiiiiiiece e e e st e ranaees 70
The run and rerun COMMEANTSuuiiiiiiiiii e e e e s eeas 73
The K111 COMMANG ...ttt e e e e e e et e e e e e s e bbb e e e e e e e e e annnbnnees 76
The attach and the detach COMMANASc.uviiiiiiiiiii e 77
Controlling the Process ENVIFONMENTcuuiiiiiiiieeeiiiiiiie e e e e e e e 78
MUILIPIrOCESS DEDUGTING ..ottt e e e e et e e e e e e e r e e e e e e e aanees 81
Processes That USE fOFK()uuurereeeiieeiiiiiie ettt e e e e e e e e 83
Processes That USE E@XEC() ...uuuvrrrrriieeeiiiiiiitiiit e e e ettt e e e e e st e e e e e e st e e e e e e e e aanes 85
(70T g3 w1 LI 1= o 10 o o 1T [86
Locating the Site of a Problem. OVEIVIEW...........uuueiice e 86
T 1 o0}]] £ 88
Breakpoint DEfINITIONSuuuiiiiiiiiiiiiiiiiiiii e 88
11 010 1] 11T 90
The qUIet SPECITIEN ..o 90
DEBIECTIONS ..viiitiiiiiiiti i 91

Vii

Intel(R) Debugger (IDB) Manual

viii

PlACE DEIECIONSttt ettt e e e e e e e e e e e e e e s e e eeeeeeeaes 91
WALCKH DEIECTONSeiiieeeiiie ettt e e e e e e et e e e e e e e e e e e e e e e 94
][0 = U 1= (=T o] (o] 96
UNaligNed ACCESS DELECIOIS. ...uuuuiii i it e e e e e e e e et e e e e e e e e e rra e as 96
TRFEA FHILEN ..o e e e e e e e e e e e e e e e as 97
0T o= | 11 =) 97
BreakPOINt ACHIONSuuiiiiiiiiiiiiitteite ittt e 98
When Multiple Breakpoints Trigger at ONCeoovvviiiiiiiiiiieeeeeeeeeeeeeeee e 100
RECUISIVE BreaKPOINTS uuuuiiiiiiieiiiiiiitiiieiieitiiieeeeee ettt ssnesnssennsnnsnnnnnnnes 100
=TT 1 L0 1 K= 3R= VT N O 101
MEMDBDET FUNCHIONS ...ttt e e e e e e e e e e e e e e r e e e e e e e e 101
Templates and INStANTIALIONSccuviiiiieie e e e e 102
EXCEPLION HANGIEIS.....ceiiiiiiiiiie et e e e e e e e e e 103
Special Signal BreaKPOINTSuviiiiiiiiieeiiiii e e e e eas 105
The catch and ignore COMMANGSoccviiiiiiiiiie e aee e 105
The info handle and handle COMMANAS...........eviiiiiiiiiiiiiiiiiiee e 106
UNAIGNEA ACCESSES ...coiiiiiiiiiiiitee ittt e e e e sttt e e e e e e e et et e e e e e e st an e e e e eeeeaan 110
T C e 110

Breakpoint Interactions with exec (), fork (), dlopen() and dlclose () System

(02 1| PP PP PP PPPPPPPP R PPTPPRPPP 111
Obsolete Breakpoint COMMAaNUScoooiiiiii e 111
Obsolete Watchpoint DEefiNItIONoooiiiiiiiiiiiiii e 112
Obsolete Tracepoint DefiNItioNcccoooeiiieeieee e 113
Instruction-Related Breakpoint COMMANGASooouiiiiiiiiiieeeiaiiiiie e 114
Breakpoint TADIES ... e e e e 115

Table Of Contents

Showing Breakpoint STAtUS.........cccviiiiiiir e e e e e e e e e e e e e e e 116
Enabling, Disabling, and Deleting BreakpointS............cccoiviiiiiiiiiiiiiiie e 118
Looking Around at the Code, the Data, and Other Process Informationccc....... 120
Looking at the Source Files. Expert Debuggingcccooeviiiiiiieiiiii e, 120
How the Debugger FINAS SOUICE FilESuuuiiiuiiiiiiiiiiiiiiieiiiiiiiiie e 121
How the Debugger Chooses Which Source File t0 LiSt...........ccccvviiiiiiiiiiiiiiiiieeee e 127
LiStING SOUICE FIlES ..ot e e e e e e e e 130
Showing Column INFOrMAtioN........cooiiiii e 132
Searching the Content 0f SOUICE FlESuuiiiiiiiieii e 133
Looking at the Threads. Expert DebDUQQINGuuuiieiiiiiiiiiiiiiiiiiiiiiiiieiiiieeiieeieeeeeeeeeeeeeeeaees 134
TRIEAA LEVEIS ...t e e e e e e e e e 134
Thread Manipulation COMMEANTS..........uuiiiiiiiiiiii e e e 134
Thread Display COMMAENTSooiiiiiiiiii e a e e e e 135
Other Thread COMMANGSooiiiiiiiiii e e e e eas 137
Looking at the Call Stack. Expert DebUGQINGoooiiiiiiiiiiiee e 138
Navigating the Call STACK............uuiiiiiiiii e 140
The pop COMMANG.........ccoiiiiiie ettt e e e e e e eeeeeeeeeees 144
Call Frames and Optimized COUE.........cooooiiiii i, 144
Call Frames and Machine Code Correlation...............ccoiuiiiiiiiiiiieeiee e 145
SPECIAI Ct ISSUBS ... it 145
Looking at the Data. EXpert DEDUGQINGuuuuriiiiiiiiiiiiiiiiiiiiiiiiieiirrrerre e ———————— 146
The print COMMEANGuiiiii e e e et e e e e e e e e e e e bbb ea e e e eeeeeeesbaaaaeeeeesesesraes 147
D oy (=T o Yot o T 0T) (=T = 150
LT Y] o TR] o PSRRI 150

Intel(R) Debugger (IDB) Manual

Printing Floating Point NUMDEIScoooiiiiiii e e e e 150
Restrictions on the print COMMAaNd.........ccooiiiiiiiiii e e 151
Extended NaminNg SYNTAXuuiiiii i ee et s e e e e e e s e e e e e e e e ae e e e e e e eeaaeana s 151
The printf COMMANcciii e e e e e e e e e s e e e e e e e ee e e e eeeeeennenns 152
The printi COMMANG ..ot eee e 152
The printregs COMMANG..........oooiiiiiii e 153
The printt COMMANGoooiiiiiie ettt e eeeeeees 155
The dump COMMANG ..ottt eee e 155
The call COMMEANT ... e e e e e e e e e e e s s e e e e e e e e e s nnnneees 156
The what 1s COMMEBNToiiiiiiiiiei e e e e e e e e e e 158
The whereis COMMEANGoiiiiii e e e e e e 158
The which COMMANGouiiiiiiiii e e e e e e e e e e eeneees 161
NOLES ON CH+ DEDUGGING ..ttt e e e e e e e e e e e e s s e e e e e e e e e aaaas 162
Setting the Class Scope Using the class Command...........ccceeeeiiiii e, 163
Displaying Class INFOIMELIONooeiiiiiiiiiiiiiiiee e e e e 164
Displaying Object INfOrMATIONooiiiiiiiiiiiiii e e e e 165
Displaying Static and Dynamic Type INfOrmationcccoeuiiiiiiiiimiieeeenniiiieieeeee e 165
Displaying Virtual and Inherited Class INformationccccvvvvviviiiiiiiiiiiiii. 167
Member Functions on the Stack TraCe ...t 169
Resolving Ambiguous References to Overloaded FUNCLIONSuueiiiiiiiiiiiiiiiinns 169
Advanced Program Information - Verbose Modeccccccevvviviiiiiiiiiiiiieeeeeeee e 170
N ab=T YA @ 01T = (o] PP 171
Looking at the Generated Code. Expert Debugging. OVEIVIEWevvvvevivivniiiniiinniinnn. 171
Memory Display and Search COmMMANGASuuuuuuuiiuiiiiiiiiiiiiiieri ... 172

Table Of Contents

Machine-Level Debugging. Expert Debuggingeeiiiiiiiiieiiiiiei e 175
(o To] (T pTo = U £ g ST I o] = 1 [175
MOIfYING TE PrOCESS ... i e e e e e e e e e e e e eerraaa s 176
The assign and the set variable COMMANASccccoiiiiieeiiiiiiiiin e e e e eeeenes 176
The assign and the set variable Commands in Machine-Level Debugging............. 178
The patch Command (DBX MOE ONIY)cooiiiiiiiiiiiiiice e 179
Continuing Execution of the Process. Expert Debugging. Overviewcccccoeeeeeeeeeeenn. 179
The step and stepi COMMANGS.........oooiiiiiiiiiiie e 180
The next and nexti COMMANGSooiiiiiiiiiiiiiiii e 182
The return COMMEBNTiiiiie e e e e e e e e e e 184
The cont COMMEANTiiiiiiiiii e e e e e e e e e e e e e e nnnnees 185
Bl =3 fe oo XX @] 1 41 1 4= 1 o [P 188
Using Snapshots as an UNdo MeChaniSMcooiiiiiiiiiiiiieiieiiiieeee e 188
The save snapshot COMMANG..........oooiiiiiiiii e 189
The clone snapshot COMMANG...........cooiiiiiiiiii e 189
The show snapshot COMMANG..........ocoiiiiiiiiii e 190
The delete snapshot COMMANG..........ccoiiiiiiiiiiiii e 190
SNapshot LIMItAtioNSccoooiiiii e 191
(D=1 o]0 oo [TaTe [@])11 a14=To H O o e /= TN 191
SUPPOIt LIMIEALIONS ... 192
Limitations 0N SUPPOIt fOr C ..uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiieriireee e aaarraneeanneane 192
Limitations on SUPPOIt fOr FOIMIANuuuviiiiiiiiiiiiiiiiiiiiiereere e 193
Part . Advanced TOPICSccoe e 195
YN AVZ= T (o= To I o] o] o P 195

Xi

Intel(R) Debugger (IDB) Manual

Xii

Preparing Your Program for Debugging. Advanced Debugging. Overview..........c.c.cc....... 195
Modifying Your Program to Wait for the Debugger..........ooooovriiiiiii e, 195
Debugger's Command Processing Structure. Advanced Debugging. Overview 196
Lexical Elements of Commands. OVEIVIEWoooiiiiiiiiiieieieiiieeee e 196
Lexical Elements of COMMEANTSoooiiiiiiiiiiieicce e 196
LEXICAI STALES ...ttt e e e e e e e e e e e e e 197
(o (=T 1) 11T €T TP POPPPPRRPIN 198
Embedded KEYWOIS........ .. e 198
LEAAING KEYWOITSuuuieiieiiiiiiiiiiiei s 199
RESEIVEA IHENTIEISeeiiiie e e e e e e e e 208
ADOUL IEXEIMES ...ttt e e e e e et e e e e e e s e e e e e e e e e 209
Lexemes Shared by All LANQUAGESccuuviiiiiieeeeiiiiiiiiie e e e e 209
Common EIEMENLS Of LEXEIMES.......uuiiiiiiiiiiiiiiie et 210
Whitespace and Command-Separating LEXEMESccoiiiiiiiiiiiiiee e 212
LINORM LEXEIMES ..ettuiiii ettt ettt e ettt s e e e et e e e e ttaa s s e e e e e eeettbba s e e e eeaeeesenannnes 213
LBPT LEXEIMES .. ittt ettt e et e e e et e e et et s e et e tb s e e e e tba s e aaebba e aaestaeaeerean 215
I I (=T 01T T PP U PP UPPRT 215
LKEYWORD LEXEMES......uutiiiiiiiiiiiiiiriiiiiiiiiiiiiiiiis s 215
LLINE LEXEIMES ...eviiiiiiiiii s 215
LWORD LEXEIMESuuiiiiiiiiiiiiiiiiiii s 216
LSIGNAL LEXBMESouiiiiiiiiiiiiiiiiii s 216
LSETENV and LEXPORT LEXEMEScciiiiiiiieeiiiiiie ettt 216
Lexemes That Are Represented Differently in Each Language...........ccccvvvvvvievvvvnvinnniinnnn. 216
LKEYWORD Lexemes SPECIfiC 10 CH+ ...uiuuiiiiiiiiiiiiiiiiiiiiiiieiieiessererersrernrrnnsernnnn... 218

Table Of Contents

LNORM Lexemes Specific t0 C and CH+ ... e ee e 218
LNORM Lexemes SPeCIfiC 10 FOIMIaniviiiiiiiiieiiis et e e e e e e 220
Grammar Of COMMENTSoooiiiiiii et e e e e e 222
Names and Expressions Within Commandsceoiiiiiiiieiiiiiii e eeeee 223
Identifiers, Keyword, and Typedef NAMES.............uuiiiiiiiiiiiiiiiiiiiiiiiieiiieiiieeeeeeieeennenneennneennes 223
INTEGET CONSTANES ...ttt e e e et et e e e e e e e e s tba e e e e e eeeenbeaaees 224
IVIBICTOS . e 225
(02 1| OO P PP PPPPPPP T PPTPPRTPP 225
PAraMELEIS ... 225
RETUIMN RESUIES ...ttt e e e e e e e e e eeens 226
AGUIESSES ...ttt ettt et e e et e e e e e e e e et e e e e e e e e e e e nees 226
AAreSs Of @ SOUIMCE LINEuiiiiiiiiiiiiiie et e e e e e e e 226
Other Modified FOrMS Of EXPIrEeSSIONScooiiiiiiiiiiiieee ettt 227
111010 [TP PP PPPPPOPOPPPPP 227
RESCOPEU EXPIrESSIONS ...ttt e ettt ettt e e e e e e e et e e e e e e e e e b e e e e e e e e e aanes 228
PN E Ty PES ..ttt ettt e e e et e e e e e e e e 230
EXPressions SPECITIC 10 Cuuviiiiiiiieeee et e e e e e e 230
C IBNETIEIS. ..ttt e s 231
C CONSTANTS ... 231
(O BT Yolo] o [=To [b o] (=151 (0] 1< TSR 232
C CaAlIS ...t 232
C AUAIESSES ...ttt et e et e e e 232
C LOC SPECITICALIONS ... 233
O Y/ o= PP 233

Xiii

Intel(R) Debugger (IDB) Manual

Xiv

Other FOrms Of C EXPrESSIONSccoviiiiiiiiii e eieeeeiiie s e e e e e e e eetess e s e e e e e eeate e e e e e eeeeenannaaeeeeees 236
EXPressions SPECifiC t0 CHt i e e e e e 239
(O o [0 =T 0111 £ TP PPPPPRRR 240
G CONS ANES .. 240
G CalIS .. e et e e e e e e 241
Gt AGAIESSES ...ttt e e e e e et e e e e e e e e e e et e e e e e e aeas 241
G LOC i 242
Other Modified FOrms of C++ EXPreSSiONS......cooooiiiiiiii e 242
(08 S TS ote] 1= o I (o (=2 (o] 1 242
(08] 11100 [OO PP PP PP PPPPPP P PPPPPPR 242
(08 [0 [T o 11T 4 o] =17 (o 242
G Y DB et 243
Other FOrms Of CH+ EXPIrESSIONSviiiiiiiiiiiiiiiieie e e et e e e e e e s eeeeeeas 248
EXPressions SPECIfiC t0 FOIMIANooii it e e 254
FOrtran IdeNTIfIEIS.eeiiiiie et e e e e s e e e e e 254
FOIIran CONSTANTS .. .uuuiiiiiiiiiiiiii bt 254
Fortran ReSCOPEA EXPIrESSIONSccceiiiiiiiiiiiieiiee et ettt e e e e e e e et e e e e e st ne e e e e e e s aanes 255
FOMran CallScooiiiiiiiee e 255
FOrran AGArESSEScoiiiiiiiii ittt s e 256
FOIIAN LOC ..uuiiiiiiiiiiiit e 256
oL 1= T I/ 013 PP 256
Other FOrms of FOrtran EXPreSSIONScccoiceiiie et 257
Debugging Core FileS OVEIVIEWuuuuuuuieriiiiriiiiiirerrrnrirerernerrnsrerrrr—————————————————————— 265
Invoking the Debugger 0N @ COre Fileuuviiiiiiiiiiiiiiiiiiiievieeiieeviereeeer e 265

Table Of Contents

Debugging @ COre File......coo e 266
TranspPOortiNg @ COIE Fle ...u... i e e e e e e e e e e e e e e eeeenes 267
L= 1 =TI =T o] U T T T 267
Machine-Level Debugging. Advanced Debugging........ccccooeevvieiiiiiiiii e, 267
EXamining MemMOTrY ACQAIESSESuuuuuuuuuuinuuiiiuiinitiiieinaeieaiee e nnnnnnnnnnnn 268
Using the EXaming COMMANGSuuuuuuueiuiiiiiiieiiieieieee e eennssnnnennnnnnnnnnes 268
UsiNg POINter ATNMETICuuiiiiiiiiiiiiiiiii e 268
Examining Machine-LeVel REQISIEISuuuuuuuuiiiiiiiiiiiiiieiiiiiiiiiiieeeiineeeeaeeeeeeeeeeneeeeeennnnnnes 269
Stepping at the Maching Level ... 269
DTSz TSIt =T 0 Yo [T T I L o £ R 269
Debugging Parallel ApplicationS. OVEIVIEWuuuuuuruuuieenieeniennieeeneenneenneenneennnenneennnennnes 270
Starting a Parallel Debugging SESSIONc..uuiiiiiiiiieii e 272
Using Commands in a Parallel Debugging SESSIONcccuiiiiiiiiiiiiieeiieiiiiiieee e 273
Working With Sets of Application ProCESSES..........uuiiiiiiiiiiiiiiiiiee e 277
Using Debugger Variables to Store Process Sets and Ranges............uvvvvvvvivevvieerineninnnnnn. 278
ProCesSs Set OPEIAtIONS.......ccuuiiiiiiiieee e ettt e e e e e e e e e e s s e e e e e e s e nsbb e e e e eeeeeaanan 279
Changing the Current Set with the focus Command ..., 280
Working with Aggregated MESSAQESccovvvviiiiiiiiiieeieeeeeeeeeee ettt aeeeees 280
oY= LTS I D T=T o 10 To o 11T I o 1 281
Tip 1. How to Obtain Better Aggregate OULPULSccoovviiiiiiiiiiiie e, 281
Tip 2. HOW to Synchronize ProCeSSESccooviiiiiiiiiiee e, 281
Tip 3. How to Find the Sources in a Parallel Debugging Sessioncccccceiiiinn, 282
Parallel Debugging EXAMPIES........uuuuuiuuiiiiiiiiiiiiiiiiiiieniieriianrenerneeeenea————a—————————————— 283
Using the mpirun_ dbg.idb Startup File ..o 286

XV

Intel(R) Debugger (IDB) Manual

Debugging Remote Applications. OVEIVIEW.ccuuuuiiiiiieeieieeiiiiei e e e e e e e 287
Starting a Remote Debugging SESSION........ccoviiiiiiiii e 288
Connecting to the REMOLE PrOCESSuuiiiii et e e e 288
Ending the Remote Debugging SESSIONcoii i it e e e e e 289
APPENIXES ... 290
List of Debugger VariabIEsuuuuiiiiiiiiiiiiiiiiiiiiiiiiiei e ennnnnnes 290
1T 010 o o T A=] L 294
corefile listobj.c EXample ... 295
Array Navigation EXAMPIEoooiiiiiiiiiiiieieeeeeeeeeeee ettt 300
100 = TP PPPRPPPPPUPPPPPRPPI 301

XVi

Introduction to Intel® Debugger (IDB)

The Intel® Debugger (IDB) is a component of Intel® compilers. It is a full-featured symbolic
source code application debugger that helps programmers

Debug programs
Disassemble and examine machine code and examine machine register values
Debug programs with shared libraries
Debug multiple programs or processes
Debug multithreaded applications
IDB provides debugging support for the following languages: C, C++ and Fortran (including
Fortran 95/90). It also provides a choice of command-line or graphical user interface (GUI)
under the Eclipse* platform.
IDB has two modes:
dbx (default mode)
gdb (optional mode)
IDB supports the Intel® C++ and Intel® Fortran Compilers.
IDB works on the following desktop and server platforms:

IA-32 systems running Linux*, Windows*, and Mac OS*

Systems using Intel® Extended Memory 64 Technology (Intel® EM64T) processors,
running Linux and Windows

Itanium® 2-based systems running Linux and Windows

Obtaining an Installation Kit

The Intel® Debugger is included in the Intel® C++ Compiler and Intel® Fortran Compiler. These
Intel® Compilers are available for Linux, Windows, and Mac OS systems.

In addition, kits, documentation, and answers to frequently asked questions are available from
the following sources:

Intel compilers web pages (http://www.intel.com/software/products/compilers/)

Intel(R) Debugger (IDB) Manual

Intel® Developer Services forum (http://www.softwareforums.intel.com/ids/)

Authorized retailers

About This Document

This manual describes using the Intel® Debugger on Linux* and Mac OS* systems, including

preparing your program and starting the debugger, using debugger commands to accomplish

various tasks, information about viewing data, viewing the call stack, controlling execution and
locating problems, as well as detailed, advanced information.

Organization

The manual is organized as follows:

Part | contains a quick introduction to the Debugger

Part Il contains information to help you make expert use of the Debugger
Part 11l contains advanced reference information

The appendixes contain the following information:

the Debugger variables

the Debugger aliases

the corefile_listobj.c example

the array navigation example

Intended Audience

This manual is intended for programmers who have a working knowledge of one of the
programming languages that Intel IDB supports (C, C++, Fortran).

Notation Conventions

The following conventions are used in this manual:

Convention Meaning

% A percent sign represents the C shell system prompt.

iid A pound sign represents the default super-user prompt.

UPPERCASE |[The operating system differentiates between lowercase and uppercase

lowercase characters. On the operating system level, you must type examples,
syntax descriptions, function definitions, and literal strings that appear
in text exactly as shown.

Intel(R) Debugger (IDB) Manual

Ctrl+C This symbol indicates that you must press the Ctrl key while you
simultaneously press another key (in this case, C).

monospaced This typeface indicates a routine, partition, pathname, directory, file, or

text non-terminal name. This typeface is also used in interactive examples.

monospaced In interactive examples, this typeface indicates input that you enter. In

bold text syntax statements and text, this typeface indicates the exact name of a
command or keyword.

monospaced Monospaced italic type indicates variable values, place holders, and

italic text lIfnction argument names.

In syntax definitions, monospaced italic text indicates non-terminal
names. When a non-terminal name consists of more than one word,
the words are joined using the underscore (), for example,
breakpoint_command.

italic text Italic type indicates book names or emphasized terms.
A colon (:) starts the syntax definition of a non-terminal name (in this

too bar le, foo_bar. Vertical b ting items that i

. item1 [@Xample, foo_bar. Vertical bars () separating items that appear in

| item2 |syntax definitions indicate that you choose one item from among those

| item3 |listed.
L1 In syntax definitions, brackets indicate items that are optional.
option T--- A set of three horizontal ellipses indicates that you can enter additional
Optfon »--- [parameters, options, or values. A semicolon, comma, or space
option

preceding the ellipses indicates successive items must be separated
by semicolons, commas, or spaces.

What's New in this Release

This release contains a number of changes, improvements, and new features. The following list
describes the major 9.1 enhancements:

Eclipse* plug-in is now available on the Intel® C++ Compiler for Linux* IA-32 and
Itanium®-based systems. The Eclipse plug-in allows the user to choose the Intel®
Debugger for debugging within the C/C++ Development Tools* (CDT)/Eclipse
environment as described in Starting the Debugger Using Eclipse*.

Remote debugging is how supported on Linux I1A-32 systems as described in Debugging
Remote Applications.

The "%" unary operator is now available. The operator reverses all the bytes of its
integer operand as described in % Unary Operator.

f)Note:

Please refer to the Release Notes for the most recent information about features
implemented in this release.

Intel(R) Debugger (IDB) Manual

Reporting Problems

For instructions about reporting problems, please see the Technical Support section of the
compiler release notes.

What to Report

Please provide the following information when you enter your problem report. Doing so will
make it easier for us to reproduce and analyze your problem. If you do not provide this
information, we may have to ask you for it.

A description of the problem. The clearer and more detailed the description, the easier it
will be for us to reproduce and analyze your problem.

A transcript of the debugger output. You can obtain this by using the record io
debugger command or by using the script (1) system command.

Operating system and version information. The output of uname -a is best.

Version information. The version number is in the welcome banner that displays when
you invoke the debugger. You can also obtain the version number by invoking the
debugger with the idb -v command.

The smallest source code example possible; build instructions; source languages,
compiler versions, and so forth; and a pointer to a zip file containing sources or binaries
that reproduce the problem. To obtain compiler versions, you can use the -v option if
your compiler supports it (see the reference page for your compiler).

The exact debugger commands that cause the problem to occur.

Any other information that you think would be helpful.

The debugger development team can use ftp to fetch sources and executables if you can
place them in an anonymous FTP area. If not, you may be asked to use another method.

Related Publications

The following documents contain related information:
Man pages for the various compilers
The release notes for the Intel® Debugger

The Intel® Compiler documentation

Intel(R) Debugger (IDB) Manual

Part I. A Quick Introduction to Using the Intel®
Debugger
About Using the Intel® Debugger. A Quick Introduction
This section provides a quick introduction to the debugger. The user will learn how to
Prepare a Program for Debugging
Start the Debugger
Enter Debugger Commands
Script or Repeat Previous Commands
Run the Program Under Debugger Control
Pause the Process at the Problem
Examine the Paused Process

Continue Execution of the Process

Making Simple Use of the Debugger. Overview

The Intel® IDB supports DBX and GDB modes. By default, IDB operates like the DBX
debugger. In the GDB mode, Intel IDB operates like the GNU* Debugger, GDB*. See the
Starting the Debugger section to get to know how to launch the debugger in the required mode.

You look for a bug by doing the following:

1. Find a repeatable reproducer of the bug (the simpler the reproducer is, the easier the
next steps will be).

2. Prepare your program for debugging.

3. Start the debugger.

Give commands to the debugger.

e Command the debugger to either
o Prepare to create a process running the program, or
o Attach to and interrupt a process that you created using normal operating system
specific methods.
¢ Command the debugger to create breakpoints that will pause the process as close as
possible to where the bug happened.
e If you are using the debugger to create the process, tell it to create the process now.

Intel(R) Debugger (IDB) Manual

1. Do whatever it takes to reproduce the bug, so that the breakpoints will stop the process
close to where the bug has caused something detectably wrong to happen.
2. Look around to determine the location of the bug:

o If the bug is in the code where the debugger has stopped the process, exit the
debugger and fix the bug.

o If the bug has not happened yet, remove any breakpoints that are triggering too
often, create other breakpoints that work better at locating the problem, and
continue the process.

o If the bug has already occurred, take the same steps of creating breakpoints and
so on, but set one or more breakpoints earlier in the program before the error
occurs. Rerun from an earlier position (a snapshot if you made one, or else the
beginning of the program), and step through the program to determine the exact
line causing the error.

Preparing a Program for Debugging. Simple Debugging

Compile and link your program using the -g option.

)

% icc -g tmp.c
For more information see also:

Preparing the Compiler and Linker Environment.

Starting the Debugger. Simple Debugging

Before you start the debugger, make sure that you have correctly set the size information for
your terminal; otherwise, the debugger's command line editing support may act unpredictably.
For example, if your terminal is 25x80, you may need to set the following:

% stty rows 25 ; setenv LINES 25
% stty cols 80 ; setenv COLS 80

There are four basic alternatives for running the debugger on a process (see examples below):

1. Have the debugger create the process using the shell command line to identify the
executable to run. (dbx) (gdb)

2. Have the debugger create the process using the debugger commands to identify the
executable to run. (dbx) (gdb)

3. Have the debugger attach to a running process using the shell command line to identify
the process and the executable file that process is running. (dbx) (gdb)

4. Have the debugger attach to a running process using the debugger commands to
identify the process and the executable file that process is running. (dbx) (gdb)

DBX Mode

Intel IDB starts operating in DBX mode by default, so you do not have to specify any special
options in the shell command line.

Examples:
1. Creating the process using the shell command line.

% idb a.out

Intel (R) Debugger for ..., Version ..., Build
object file name: a.out

Reading symbolic information ...done

(idb) stop in main

[#1: stop in int main(void) 1

(idb) run

2. Creating the process using the debugger commands.

idb
ntel (R) Debugger for ..., Version ..., Build
(idb) load a.out
Reading symbolic information ...done
(idb) stop in main
[#1: stop in int main(void)]
(idb) run

H o°

Intel(R) Debugger (IDB) Manual

3. Attaching to a running process using the shell command line.

$./a.out &

[1] 27859

% jobs

[11+ Running ./a.out &

% idb a.out -pid 27859

Intel (R) Debugger for ..., Version ..., Build
Reading symbolic information ...done

Attached to process id 27859

Press Ctrl+C to interrupt the process.

4. Attaching to the process using the debugger commands.

% ./a.out &

[1] 27859

% jobs

[1]+ Running ./a.out &

$ idb

Intel (R) Debugger for ..., Version ..., Build

(idb) attach 27859 a.out
Reading symbolic information ...done
Attached to process id 27859

Press Ctrl+C to interrupt the process.

Intel(R) Debugger (IDB) Manual

GDB Mode
To start the debugger in the GDB mode, specify the -gdb option in the shell command line.
Examples:

1. Creating the process using the shell command line.

idb -gdb a.out
ntel (R) Debugger for ..., Version ..., Build

H o°

object file name: a.out

Reading symbols from a.out...done

(idb) break main

Breakpoint 1 at 0x80484f6: file gwerty.c, line 9.
(idb) run

2. Creating the process using the debugger commands.

$ idb -gdb

Intel (R) Debugger for ..., Version ..., Build
(idb) file a.out

Reading symbols from a.out...done.

(idb) break main

Breakpoint 1 at 0x80484f6: file gwerty.c, line 9.
(idb) run

3. Attaching to a running process using the shell command line.

% ./a.out &

[1] 27859

% jobs

[1]+ Running ./a.out &

% idb -gdb a.out -pid 27859

Intel (R) Debugger for ..., Version ..., Build

object file name: a.out
Reading symbols from a.out...done.
Attached to process id 27859

Press Ctrl+C to interrupt the process.

4. Attaching to the process using the debugger commands.

% ./a.out &

[1] 27859

% jobs

[1]+ Running ./a.out &

% idb -gdb

Intel (R) Debugger for ..., Version ..., Build

(idb) file a.out
Reading symbols from a.out...done.

8

Intel(R) Debugger (IDB) Manual

(idb) attach 27859
Attached to process id 27859

Press Ctrl+C to interrupt the process.

f)Note:

In the case of Fortran, routine main at which your program stops is not your main program
unit. Rather, it is a main routine supplied by the Fortran system that performs some
initialization and then calls your code. Just step forward using the step command a couple
of times (probably twice) and you will soon step into your code.

ﬂNote:

If you want full compatibility with GDB output, you need to set the debugger variable
$gdb compatible output to 1. Otherwise, IDB will produce the extended GDB output in
some cases.

See Attaching to a Running Program for the information about how to obtain the PID of a
program.

Entering Debugger Commands

The debugger issues a prompt when it is ready for the next command from the terminal:

(idb) you type here

When you enter commands, you can use the left and right arrow keys to move within the line
and the up and down arrow keys to recall previous commands for editing. When you finish
entering a command, press the Enter key to submit the completed line to the debugger for
processing.

Typically, you enter one debugger command on one command line. However, if a debugger
command requires typing on multiple lines, type a backslash (\) character at the end of the line
to be continued.

To re-execute the last valid command, press Enter without typing any characters.

Following are two very useful commands available in both modes:

(idb) help
(idb) quit

Scripting or Repeating Previous Commands. Simple Debugging

DBX Mode

Intel(R) Debugger (IDB) Manual

To execute debugger commands from a script, use the source command as follows:

(idb) source filename

The source command causes the debugger to read and execute debugger commands from the
file named filename.

GDB Mode

The source command is not yet available in the GDB mode.

Context for Executing Commands

Although the debugger supports concurrently debugging multiple processes, it operates only on
a single process at a time, known as the current process.

Processes contain one or more threads of execution. The threads execute functions. Functions
are sequences of instructions that come from source lines within source files.

As you enter debugger commands to manipulate your process, it would be very tedious to have
to repeatedly specify which thread, source file, and so on you wish the command to be applied
to. To prevent this, each time the debugger stops the process, it re-establishes a static context
and a dynamic context for your commands. The components of the static context are
independent of this run of your program; the components of the dynamic context are dependent
on this run.

The static context consists of the following:

e A current program
o Acurrentfile
o A currentline
o A current column, if the application is compiled with column information emitted.
See Showing Column Information for details.
¢ The dynamic context consists of the following:
o A current call frame
o A current thread
o The particular thread executing the event that caused the debugger to gain
control of the process

You can change most of these individually to point to other instances, as described in the
relevant portions of this manual, and the debugger will modify the rest of the static and dynamic
context to keep the various components consistent.

Running a Program Under Debugger Control

You can tell the debugger to create a process or to attach to an existing process.

10

Intel(R) Debugger (IDB) Manual

After you specify the program (either on the shell command line or by using the 1oad (dbx) or
file (gdb) command), but before you have requested the debugger to create the process, you
can still do things that seem to require a running process; for example, you can create
breakpoints and examine sources. Any breakpoints that you create will be inserted into the
process as soon as possible after it executes your program.

To have the debugger create a process (rather than attach to an existing process), you request
it to run, specifying, if necessary, any arguments and input and output redirection as follows:

% idb a.out

Intel (R) Debugger for ..., Version ..., Build ...
...Preparing the Compiler and Linker Environments>
(idb) run

or

(idb) run arguments
or

(idb) run arguments > output-file
or

(idb) run arguments < input-file > output-file

The result of using any of the preceding command variations is similar to having attached to a
running process.

DBX Mode

The rerun command repeats the previous run command with the same arguments and file
redirection.

GDB Mode

The run command without arguments repeats the previous run (with the same arguments, input
and output redirections).

r is a shortcut for the run command.

Pausing the Process at the Problem

Following are the most common ways to pause a process:

11

Intel(R) Debugger (IDB) Manual

Press Ctrl+C. (dbx) (gdb)
Wait until the process raises a signal. (dbx) (gdb)
Create a breakpoint before you run or continue the process. (dbx) (gdb)

Create a watchpoint before you run or continue the process. (dbx) (gdb)

DBX Mode

1. Pres Ctrl+C.

(idb) run
e
Interrupt (for process)
Stopping process localhost:27903 (a.out).
Thread received signal INT
stopped at [int main(int) :5 0x120001138]
5 while (argc < 2 && i < 10000000)

2. Wait until the process raises a signal.

3. Create a breakpoint before running or continuing the process.

(idb) stop in main
[#1: stop in int main(void)]

(idb) run
[1] stopped at [int main(void) :182 0x08052e8f]
182 List<Node> nodeList;

4. Create a watchpoint before running or continuing the process.

(idb) watch variable nodeList. firstNode write
[#2: watch variable nodeList. firstNode write]
(idb) cont
[2] Address 0xbfffd279 was accessed at:
void List<Node>::append(class Node* const): src/x list.cxx
[line 149, 0x0804c5ed] append(class Node* const)+0x15:
movl $edx, (%eax)
0xbfffd278: 0Old value 0x000000000805e600
Oxbfffd278: New value = 0x000000000805e600
[2] stopped at [void List<Nodes>::append(class Node* const) :149
0x0804c5ef]
149 _firstNode = node;

GDB Mode

1. Press Ctrl+C.
(idb) run

e
Interrupt (for process)

12

Intel(R) Debugger (IDB) Manual

Stopping process localhost:27903 (a.out).

Thread received signal INT
main (argc=1) at x whatHappensOnControlC.cxx: 5
5 while (argc < 2 && i < 10000000)

2. Wait until the process raises a signal.

(idb) run

Starting program: /home/user/examples/x segv

Program received signal SIGSEGV

buggy (input=0xbfffdf37 "/home/user/examples/x segv", output=0x0) at
src/x segv.cxx:13

13 output [k] = input [k];

3. Create a breakpoint before running or continuing the process.

(idb) break main

Breakpoint 1 at 0x8052e8f: file src/x list.cxx, line 182.
(idb) run

Starting program: /home/user/examples/x list

Breakpoint 1, main () at src/x list.cxx:182

182 List<Node> nodeList;

4. Creating a watchpoint before running or continuing the process. Following are the most
common ways to pause a process:

(idb) watch nodeList. firstNode
Hardware watchpoint 2: nodeList. firstNode
(idb) continue

Continuing.
0ld value = (Node *) 0x0
New value = (Node *) 0x805e600

Hardware watchpoint 2: nodelList. firstNode
List<Node>: :append (node=0x805e600) at src/x list.cxx:149
149 _firstNode = node;

Examining the Paused Process

This section gives general information how to examine components of the paused process
looking at

the source files
the threads
the call stack
the data

the signal state

13

Intel(R) Debugger (IDB) Manual

the generated code
For the detailed information, see

Looking Around at the Code, the Data, and Other Process Information

Looking at the Source Files. Simple Debugging
You can perform the following operations on source files:

e Tell the debugger where your sources are, if it cannot find them.
¢ Find out the name of the current source file.

¢ Switch to a different source file.

e Listlines in a source file.

e Search within a source file.

DBX Mode

Following is an example that shows listing lines and using the / command to search for a string:

(idb) file
src/x list.cxx
(idb) 1list 180:10

180 main()

181 {

182 List<Node> nodeList;

183

184 // add entries to list

185 //
> 186 IntNode* newNode = new IntNode (1) ;

187 nodeList .append (newNode) ; {static int somethingToReturnTo;
somethingToReturnTo++;

188

189 CompoundNode* cNode = new CompoundNode (12.345, 2);
(idb) /CompoundNode

192 CompoundNode* cNodel = new CompoundNode (3.1415, 7)

Aliases are shorthand forms of longer commands. This example shows using the W alias, which
lists up to 20 lines around the current line. Note that a right bracket (>) marks the current line.

(idb) alias W

W list Scurline - 10:20
(idb) W
176
177
178 // The driver for this test
179 //
180 main()
181
182 List<Node> nodelist;
183
184 // add entries to list
185 //

14

Intel(R) Debugger (IDB) Manual

> 186 IntNode* newNode = new IntNode (1) ;
187 nodelist .append (newNode) ;
188
189 CompoundNode* cNode = new CompoundNode (12.345, 2);
190 nodelist .append (cNode) ;
191
192 nodelList.append (new IntNode (3)) ;
193
194 IntNode* newNode2 = new IntNode (4) ;
195 nodelList.append (newNode2) ;

GDB Mode

Use info source, info line, and list commands for looking at source files:

(idb) info source
Current source file is src/x list.cxx
(idb) list 180, +10

180 main ()

181 {

182 List<Node> nodelList;

183

184 // add entries to list

185 //

186 IntNode* newNode = new IntNode (1) ;

187 nodeList .append (newNode) ; {static int somethingToReturnTo;
somethingToReturnTo++;

188

189 CompoundNode* cNode = new CompoundNode (12.345, 2);
(idb) forward-search CompoundNode

192 CompoundNode* cNodel = new CompoundNode (3.1415, 7);

Looking at the Threads. Simple Debugging

In a multithreaded application, you can obtain information about the thread that stopped or
about all the threads, and you can then change the context to look more closely at a different
thread. Note that a right bracket (>) marks the current thread. And the asterisk (*) marks the
thread with return status.

DBX Mode
(idb) thread
Thread Name State Substate Policy
Pri
>* 1 default thread running VP 3 SCHED OTHER 19
(idb) show thread
Thread Name State Substate Policy
Pri
>3 1 default thread running VP 3 SCHED OTHER 19
-1 manager thread blk SCs SCHED RR 19
-2 null thread for slot 0 running VP 1 null thread -1
-3 null thread for slot 1 ready VP 3 null thread -1

15

Intel(R) Debugger (IDB) Manual

null thread for slot 2
null thread for slot 3
threads (0x140000798)

threads+8 (0x1400007a0)
threads+16 (0x1400007a8)
threads+24 (0x1400007b0)
threads+32 (0x1400007b8)

new
new

blocked
blocked
blocked
blocked
blocked

new
new

cond
cond
cond
cond
cond

wwwww

null thread
null thread
SCHED OTHER
SCHED OTHER
SCHED OTHER
SCHED OTHER
SCHED_OTHER

You can select any thread to be the focus of commands that show things. For example:

(idb) thread 2

Thread
Pri

> 2

Name

threads (0x140000798)

GDB Mode

blocked

Substate

Policy

SCHED_ OTHER

Within the GDB mode, you can have a look at a particular thread by specifying the internal
debugger thread number. The asterisk (*) marks the current thread. Or you can observe all

threads wh

ile your program is running:

(idb) thread

ID State
>* 8 stopped
(idb) show thread

ID State

1 stopped

2 stopped

3 stopped

4 stopped

5 stopped

6 stopped

7 stopped
>* 8 stopped

This command provides the following information about known threads:

=i
=d
19
19
19
19
19

19

¢ Number: Number of a thread from the debugger point of view. This number is not used
for numbering again if a thread dies.
e Thread TID: Thread identifier. TID is an identifier (unique) assigned to each thread
inside the thread library.

LWP PID: Light weight process identifier (unique) assigned by the Linux kernel to each

process in the system. Architecturally, LinuxThreads has a PID for each thread in a

mul

16

tithreaded application.

Intel(R) Debugger (IDB) Manual

e Location: Location where the thread stopped. Its output is very similar to the backtrace
location field.

You can select any thread to be the focus of commands that show things. For example:

(idb) thread 2
ID State
> 2 stopped

Looking at the Call Stack. Simple Debugging

You can examine the call stack of any thread. Even if you are not using threads explicitly, your
process will have one thread running your code. You can move up and down the stack, and
examine the source being executed at each call.

DBX Mode

(idb) where 3

>0 0x080535c4 in ((IntNode*)0x805e600)->IntNode: :printNodeData ()
"src/x list.cxx":94

#1 0x0804c6f7 in ((List<Node>*)0xbfffb068)->List<Node>: :print ()
"src/x list.cxx":168

#2 0x08053376 in main() "src/x list.cxx":203
(idb) up 2
>2 0x08053376 in main() "src/x list.cxx":203
203 nodelList.print () ;
(idb) 1list $curline - 3:5
200 CompoundNode* cNode2 = new CompoundNode (10.123, 5);
201 nodelList.append (cNode2) ; {static int somethingToReturnTo;
somethingToReturnTo++;
202
> 203 nodelList.print () ;
204 }

(idb) down 1
>1 0x0804c6f7 in ((List<Node>*) 0xbfffb068)->List<Node>: :print ()
"src/x list.cxx":168

168 currentNode->printNodeData () ;
GDB Mode
(idb) backtrace 3
#0 0x080535c4 in IntNode::printNodeData () at src/x list.cxx:94
#1 0x0804c6f7 in List<Node>::print () at src/x list.cxx:168
#2 0x08053376 in main () at src/x list.cxx:203
(idb) up 2
#2 0x08053376 in main () at src/x list.cxx:203
203 nodelList.print () ;
(idb) 1list 200, +5
200 CompoundNode* cNode2 = new CompoundNode (10.123, 5);
201 nodelList.append (cNode2) ; {static int somethingToReturnTo;
somethingToReturnTo++;
202
203 nodelList.print () ;
204
(idb) down 1

17

Intel(R) Debugger (IDB) Manual

#1 0x0804cé6f7 in List<Node>::print () at src/x list.cxx:168
168 currentNode->printNodeData () ;

Looking at the Data. Simple Debugging

You can look at variables and evaluate expressions involving them by using the print
command.

DBX Mode

(idb) print fdata
12.3450003

(idb) print idata

2

(idb) print idata + 59
61

(idb) print this
0x805e610

(idb) print *this
class CompoundNode {
fdata = 12.3450003;

data = 2; // class IntNode
nextNode = 0x0; // class IntNode: :Node
GDB Mode

(idb) print fdata

$2 = 12.345

(idb) print idata

S$3 = 2

(idb) print idata + 59

$4 = 61

(idb) print this

$5 = (CompoundNode *) 0x805e610

(idb) print *this

$6 = {<IntNode> = {<Node> = { nextNode = 0x0}, data = 2}, fdata = 12.345}

A synonym of the print command is the inspect command. The shortcut of the print
command is p.

Looking at the Signal State
The debugger shows you the signal that stopped the thread.

DBX Mode

(idb) run

Thread received signal SEGV

stopped at [void buggy (char*, char*):13 0x080487b8]
13 output [k] = input [k];

18

Intel(R) Debugger (IDB) Manual

GDB Mode

(idb) run

Starting program: /home/user/examples/x segv

Program received signal SIGSEGV

buggy (input=0xbfffbf37 "/home/user/examples/x segv", output=0x0) at
src/x segv.cxx:13

13 output [k] = input [k];

Looking at the Generated Code. Simple Debugging

You can print memory as instructions or as data.

DBX Mode

In the following example, the wi alias lists machine instructions before and after the current
instruction. Note that the asterisk (*) marks the current instruction.

(idb) alias wi
wi (Scurpc - 20)/10 i
(idb) wi
CompoundNode : : CompoundNode (float, int): x list.cxx
[line 105, 0x120002348] cpys $£f17,$£17,$f0
[line 105, 0x12000234c] bis r31, rl8, r8
[line 101, 0x120002350] bis r31, rl9, rle6
[l1ine 101, 0x120002354] bis r31, r8, rl7
[line 101, 0x120002358] bsr r26, IntNode::IntNode (int)
*[line 101, 0x12000235c] 1ldg rl8, -32712(gp)
[line 101, 0x120002360] lda rl18, 48(rl8)
[line 101, 0x120002364] stqg rl8, 8(rl9)
[line 101, 0x120002368] sts $f0, 24 (rl9)
[l1ine 106, 0x12000236c] bis r31, rl9, roO
(idb) $pc/10x
0x12000235c: 0x8038 0xa65d 0x0030 0x2252 0x0008 0xb653 0x0018 0x9813
0x12000236c: 0x0400 0x47f3
(idb) $pc/6xx
0x12000235c: 0xab5d8038 0x22520030 0xb6530008 0x98130018
0x12000236c: 0x47£30400 0x47f5041a
(idb) s$pc/2X
0x12000235c: 0x22520030a65d8038 0x98130018b6530008

GDB Mode

Use the x command to dump memory in various formats. The disassemble command also
provides disassembling capability.

(idb) x /10i $pc

0x08052e8f <main+27>: pushl $edi

0x08052e90 <main+28>: leal -160 (%ebp) , %eax
0x08052e96 <main+34>: movl $eax, (%esp)
0x08052e99 <main+37>: call 0x0804c4cs8

< ZN4ListI4NodeEClEv>

0x08052e9e <main+42>: addl $0x4, %esp
0x08052eal <main+45>: movl $0x0, -156(%ebp)

19

Intel(R) Debugger (IDB) Manual

0x08052eab <main+55>: pushl $edi

0x08052eac <main+56>: movl $S0xc, (%esp)
0x08052eb3 <main+63>: call 0x0804c308 < init+744>
0x08052eb8 <main+68>: addl $0x4, %esp

(idb) x /10xh $pc

0x8052e8f <main+27>: 0x8d57 0x6085 Oxffff O0x89ff 0x2404 O0x2ae8 0xff96 0x83ff
0x8052e9f <main+43>: 0x04c4 0x85c7

(idb) x /6xw $pc

0x8052e8f <main+27>: 0x60858d57 O0x89ffffff 0x2ae82404 0x83ffffoe6

0x8052e9f <main+43>: 0x85c704c4 Oxffffffe4

(idb) x /2xg $pc

0x8052e8f <main+27>: 0x89ffffff60858d57 0x83ffff962ae824044

To examine individual registers, use the print command with the register name prepended with
the dollar sign (s). Commands showing all (or a subset of) the registers are specific for the
mode; see examples below.

Looking at the Registers

DBX Mode

To look at all the registers, use the printregs command. For example:

(idb) print $sp

-1073766620

(idb) printx $sp

Oxbfffof24

(idb) printregs

Seax ox1 1

Secx 0xbfffal9c -1073766244
Sedx 0xbfffa020 -1073766368
Sebx 0xb72dbd98 -1221739112
Sesp [$sp] Oxbfffo9f24 -1073766620
Sebp [$fp] 0xbfffa008 -1073766392
Sesi 0xbfffa094 -1073766252
Sedi 0xb72d967c -1221749124
Seip [$pc] 0x8052e8f 134557327
seflags 0x286 646

Scs 0x23 35

Sss 0x2b 43

Sds 0x2b 43

Ses 0x2b 43

Sfs 0x0 O

Sgs 0x33 51

Sorig eax Oxffffffff -1

Sfctrl 0x37f 895

Sfstat 0x0 0

Sftag 0x0 0

Sfiseg 0x0 O

sfioff 0x0 O

Sfoseg 0x0 0

Sfooff 0x0 O

Sfop 0x0 0

Sfo 0x0 O

Sfl 0x0 O

SE2 0x0 0

Sf3 0x0 O

20

Intel(R) Debugger (IDB) Manual

$f4 0x0 0
$f5 0x0 0
sfé 0x0 0
SE£7 0x0 0
SxmmO 0x0 union {
v4 float = [0] = 0,[1] = 0,[2] = 0,[3] = 0;
v2 double = [0] = 0,[1] = O;
v16 int8 = <repeats 15 times>0, [15] = O;
v8 intlé = [0] = 0,[1] = 0,[2] = 0,[3] = 0,[4] = 0,[5] =0,[6] =0,[7] = 0;
v4 int32 = [0] = O, [1] = O, [2] = 0, [3] = O;
} v2 inte4 = [0] = 0, [1] = O;
Sxmml 0x0 union {
v4 float = [0] = 0, [1] = 0,[2] = 0,I[3] = O;
v2 double = [0] = 0,[1] = O;
v1l6 int8 = <repeats 15 times>0, [15] = O;
v8 intleé = [0] = 0,[1] = 0,[2] = 0,[3] = 0,[4] = 0,[5] = 0,[6] = 0,[7] = 0;
v4 int32 = [0] = 0,[1] = 0,[2] = 0,[3] = 0;
} v2 int64 = [0] = 0, [1] = O;
Sxmm2 0x0 union {
v4 float = [0] = 0, [1] = 0, ([2] = 0, [3] = O;
v2 double = [0] = 0,[1] = O;
v1lée int8 = <repeats 15 times>0, [15] = O;
v8 intle = [0] = O, [1] = O, ([2] = O0,[3] = 0,[4] = 0,([5] = 0,[6] = 0,[7] = O;
v4 int32 = [0] = 0, [1] = 0,[2] = 0,I[3] = O;
} v2 inté64 = [0] = 0, [1] = O;
$xmm3 0x0 union {
v4 float = [0] = 0,[1] = 0,[2] = 0,[3] = 0;
v2 double = [0] = 0, [1] = O;
v16 int8 = <repeats 15 times>0, [15] = O;
v8 intlé = [0] = 0,[1] = 0,[2] = 0,[3] = 0,[4] = 0,[5] =0,[6] =0,[7] = 0;
v4 int32 = [0] = 0, [1] = 0, [2] = 0, [3] = O;
} v2 inte4 = [0] = 0, [1] = O;
Sxmmé 0x0 union
v4 float = [0] = 0, [1] = 0,[2] = 0,I[3] = O;
v2 double = [0] = 0,[1] = O;
v1l6 int8 = <repeats 15 times>0, [15] = O;
v8 intlé = [0] = 0,[1] = O, [2] = O0,[3] = 0,[4] = 0,I[5] = 0,[6] = 0,[7] = 0;
v4 int32 = [O] = O/ [1] = O/ [2] = O/ [3] = O;
} v2 int64 = [0] = 0, [1] = O;
Sxmm5 0x0 union ({
v4 float = [0] = O, [1] = 0, ([2] = 0, [3] = O;
v2 double = [0] = 0,[1] = O;
v1lé int8 = <repeats 15 times>0, [15] = O;
v8 intle = [0] = O, [1] = O, [2] = 0,[3] = 0,[4] = 0,[5] = 0,[6] = 0,[7] = 0O;
v4 int32 = [0] = 0, [1] = 0,[2] = 0,I[3] = O;
} v2 inté64 = [0] = 0, [1] = O;
$xmmé 0x0 union {
v4 float = [0] = 0,[1] = 0,[2] = 0,[3] = 0O;
v2 double = [0] = 0,[1] = O;
v16 int8 = <repeats 15 times>0, [15] = O;
v8 intlé = [0] = 0,[1] = 0,[2] = 0,[3] = 0,[4] = 0,[5] =0,[6] =0,[7] = 0;
v4 int32 = [0] = O, [1] = O, [2] = 0, [3] = O;
} v2 inte4 = [0] = 0, [1] = O;
Sxmm7 0x0 union

v4 float = [0] = 0,[1] = 0,[2] = 0,[3] = O;
v2 double = [0] = 0, [1] = O;
v16_int8 = <repeats 15 times>0, [15] = O;

21

Intel(R) Debugger (IDB) Manual

v8 intle = [0] = 0, [1] =

v4 int32 = [0] = 0, [1] =

v2 inte64 = [0] = O, [1] =
Smxcsr 0x1f80 8064
Svip O0xbfffa010
GDB Mode

The following commands allow you to examine sets of registers:

info registers

For example:

(idb) print $sp

$14 = (void *) Oxbfffg8e684
(idb) print /x $sp

$15 = 0xbfffg8684

(idb) info registers

Seax ox1 1

Secx 0xbfffg87fc
Sedx 0xbff£8780
Sebx 0xb72dbdos
Sesp [$spl 0xbfff8684
Sebp [$fp] 0xbff£8768
Sesi Oxbfffg87f4
Sedi 0xb72d967c
Seip [$pc] 0x8052e8f
Seflags 0x286 646
Scs 0x23 35
Sss 0x2b 43
Sds 0x2b 43
Ses 0x2b 43
S$fs 0x0 0

Sgs 0x33 51
Sorig eax Oxffffffff
sfctrl 0x37f 895
Sfstat 0x0 O
Sftag 0x0 0
Sfiseg 0x0 0
Sfioff 0x0 O
Sfoseg 0x0 0
Sfooff 0x0 0

Sfop 0x0 0

(void =*)

0,[2] = 0,I[3] = 0, [4] =
0,[2] = 0,[3] = 0;

0;

-1073766384

-1073772548
-1073772672
-1221739112

(void *) Oxbfffge84
(void *) Oxbfff8768
-1073772556
-1221749124
0x8052e8f

=i

Continuing Execution of the Process. Simple Debugging

When you have finished examining the current state of the process, you can move the process
forward and see what happens. The following table shows the aliases and commands you can

use to do this.

Desired Behavior

Command

Alias

Can Take Repeat
Cont

22

Intel(R) Debugger (IDB) Manual

Continue until another interesting cont c Yes*
thing happens

Single step by line, but step over next n Yes
calls

Single step to a new line, stepping step s Yes
into calls

Continue until control returns to the | return (dbx), £inish |None No

caller (gdb)

Single step by instruction, over calls nexti ni Yes
Single step by instruction, into calls stepi si Yes

* For the cont command, in GDB mode repeat count specifies the number of times to ignore a
breakpoint. For the other commands repeat count has the same meaning in both modes.

The following examples demonstrate stepping through lines of source code (dbx) (gdb) and
stepping at the instruction level (dbx) (gdb).

DBX Mode

Stepping through lines of source code:

(1idb) 1list $curline - 10:20

172

173 if (i == 1) cout << "The list is empty ";

174 cout << endl << endl;

175

176

177

178 // The driver for this test

179 //

180 main ()

181 {
> 182 List<Node> nodelList;

183

184 // add entries to list

185 //

186 IntNode* newNode = new IntNode (1) ;

187 nodeList .append (newNode) ; {static int somethingToReturnTo;
somethingToReturnTo++;

188

189 CompoundNode* cNode = new CompoundNode (12.345, 2);

190 nodelList.append (cNode) ; {static int somethingToReturnTo;
somethingToReturnTo++;

191
(idb) next
stopped at [int main(void) :186 0x08052eal]

186 IntNode* newNode = new IntNode (1) ;

(idb) next 3
stopped at [int main(void) :190 0x0805301a]

190 nodelist.append (cNode) ; {static int somethingToReturnTo;
somethingToReturnTo++;
(idb) step

stopped at [void List<Nodes>::append(class Node* const) :148 0x0804c5de]

23

Intel(R) Debugger (IDB) Manual

148 if (! firstNode)
(idb) list $curline - 2:6
146 {
147
> 148 if (! firstNode)
149 firstNode = node;
150 else {
151 Node* currentNode = firstNode;
(idb) next
stopped at [void List<Nodes>::append(class Node* const) :151 0x0804c5f1]
151 Node* currentNode = firstNode;
(idb) 1list $curline - 2:5
149 firstNode = node;
150 else {
> 151 Node* currentNode = firstNode;
152 while (currentNode->getNextNode ())
153 currentNode = currentNode->getNextNode () ;

(idb) return
stopped at [int main(void) :190 0x08053032]

190 nodelList.append (cNode) ; {static int somethingToReturnTo;
somethingToReturnTo++;
(idb) next 2
stopped at [int main(void) :193 0x080530ed]

193 nodelist.append (cNodel) ; {static int somethingToReturnTo;
somethingToReturnTo++;

Stepping at the instruction level:

(idb) $pc/2i
int main(void): src/x list.cxx
*[line 193, 0x08053100] main+0x28c: call append (class
Node* const)
[line 193, 0x08053105] main+0x291: addl $0x8, %esp
(idb) nexti
stopped at [int main(void) :193 0x08053105] main+0x291: addl
$0x8, %esp
(idb) $pc/1i
int main(void): src/x list.cxx
*[line 193, 0x08053105] main+0x291: addl $0x8, %esp

(idb) rerun
Process has exited
[3] stopped at [int main(void) :193 0x08053100]

193 nodelList.append (cNodel) ; {static int somethingToReturnTo;
somethingToReturnTo++;
(idb) $pc/2i
int main(void): src/x list.cxx
*[line 193, 0x08053100] main+0x28c: call append (class
Node* const)
[l1ine 193, 0x08053105] main+0x291: addl $0x8, %esp
(idb) stepi
stopped at [void List<Nodes>::append(class Node* const):146 0x0804c5d8]
append (class Node* const) : pushl %$ebp
(idb) $pc/1i
void List<Node>: :append (class Node* const): src/x list.cxx
[line 146, 0x0804c5d8] append(class Node const) : pushl
%ebp

24

Intel(R) Debugger (IDB) Manual

GDB Mode

Stepping through lines of source code:

(idb) 1list

172

173 if (1 == 1) cout << "The list is empty ";

174 cout << endl << endl;

175

176

177

178 // The driver for this test

179 //

180 main ()

181

182 List<Node> nodelist;

183

184 // add entries to list

185 //

186 IntNode* newNode = new IntNode (1) ;

187 nodeList .append (newNode) ; {static int somethingToReturnTo;
somethingToReturnTo++;

188

189 CompoundNode* cNode = new CompoundNode (12.345, 2);

190 nodelList.append (cNode) ; {static int somethingToReturnTo;
somethingToReturnTo++;

191

(idb) next

186 IntNode* newNode = new IntNode (1) ;

(idb) next 3

190 nodelList.append (cNode) ; {static int somethingToReturnTo;
somethingToReturnTo++;

(idb) step

List<Node>: :append (node=(Node *) 0x805e610) at src/x list.cxx:148
148 if (! firstNode)
(idb) 1list -2,+6

146

147

148 if (! firstNode)

149 firstNode = node;

150 else {

151 Node* currentNode = firstNode;

(idb) step

151 Node* currentNode = firstNode;

(idb) 1list -2,+5

149 firstNode = node;

150 else {

151 Node* currentNode = firstNode;

152 while (currentNode->getNextNode ())

153 currentNode = currentNode->getNextNode () ;
(idb) finish

main () at src/x list.cxx:190

190 nodelList .append (cNode) ; {static int somethingToReturnTo;

somethingToReturnTo++;

(idb) next 2

193 nodelList.append (cNodel) ; {static int somethingToReturnTo;
somethingToReturnTo++;

Stepping at the instruction level:

25

Intel(R) Debugger (IDB) Manual

(idb) x /2i $pc

0x0804c5d8 <appends: pushl $ebp
0x0804c5d9 <append+ls>: movl %esp, %ebp
(idb) nexti

146 {

(idb) x /1i $pc

0x0804c5d9 <append+ls: movl %esp, %ebp
(idb) run

Program exited normally.

Starting program: /home/user/examples/x list

Breakpoint 3, main () at src/x list.cxx:193

193 nodelList.append (cNodel) ; {static int somethingToReturnTo;
somethingToReturnTo++;

(idb) x /2i $pc

0x08053100 <main+652>: call 0x0804c5d8 <append>
0x08053105 <main+657>: addl $0x8, %esp

(idb) stepi

List?Node>::append (node= (Node *) Oxbfffc864) at src/x list.cxx:146
146

(idb) x /1i $pc

0x0804c5d8 <appends: pushl sebp

Snapshots as an Undo Mechanism

Often when you move the process forward, you accidentally go too far. For example, you may
step over a call that you should have stepped into.

In a program that does not use multiple threads, you can use snapshots to save your state
before you step over the call. Then clone that snapshot to position another process just before
the call so you can step into it.

The following example shows the stages of a snapshot being used in this way:

1. The first stage is to build the program and start debugging.

2. The next stage is to stop the process just before the call and take a snapshot. You can
see you are just before the call because the right bracket (>) to the left of the source list
shows the line about to be executed.

(idb) next 2
stopped at [int main(void) :187 0x1200024b8]

187 nodeList .append (newNode) ;
(idb) 1list $curline - 10:20

177

178 // The driver for this test

179 //

180 main ()

181

182 List<Node> nodelist;

183

184 // add entries to list

185 //

186 IntNode* newNode = new IntNode (1) ;
> 187 nodeList .append (newNode) ;

188

189 CompoundNode* cNode = new CompoundNode (12.345, 2);

190 nodeList .append (cNode) ;

191

26

Intel(R) Debugger (IDB) Manual

192 CompoundNode* cNodel = new CompoundNode (3.1415, 7);
193 nodelist .append (cNodel) ;

194

195 nodelList.append (new IntNode (3)) ;

196

(idb) save snapshot

1 saved at 08:41:46 (PID: 1012).
stopped at [int main(void) :187 0x1200024Db8]
187 nodeList .append (newNode) ;

3. You now step over the call. The execution is now after the call, shown by the right
bracket (>) being on the following source line.

(idb) next
stopped at [int main(void) :189 0x1200024d0]
189 CompoundNode* cNode = new CompoundNode (12.345, 2);
(idb) 1list $curline - 10:20
179 //
180 main ()
181 {
182 List<Node> nodeList;
183
184 // add entries to list
185 //
186 IntNode* newNode = new IntNode (1) ;
187 nodeList .append (newNode) ;
188
> 189 CompoundNode* cNode = new CompoundNode (12.345, 2);
190 nodeList .append (cNode) ;
191
192 CompoundNode* cNodel = new CompoundNode (3.1415, 7);
193 nodeList.append (cNodel) ;
194
195 nodelList.append (new IntNode (3)) ;
196
197 IntNode* newNode2 = new IntNode (4) ;
198 nodelList.append (newNode2) ;

4. Oh, how you wish you hadn't done that! No problem, just clone that snapshot you made.

(idb) clone snapshot

Process has exited

Process 1009 cloned from Snapshot 1.

1 saved at 08:41:46 (PID: 1012).
stopped at [int main(void) :187 0x1200024Db8]
187 nodeList .append (newNode) ;

5. Now you are in a new process before the call is executed.

(idb) 1list $curline - 10:20

177

178 // The driver for this test

179 //

180 main ()

181 {

182 List<Node> nodelList;

183

184 // add entries to list

185 //

186 IntNode* newNode = new IntNode (1) ;
> 187 nodelList.append (newNode) ;

27

Intel(R) Debugger (IDB) Manual

188

189 CompoundNode* cNode = new CompoundNode (12.345, 2);
190 nodelList .append (cNode) ;

191

192 CompoundNode* cNodel = new CompoundNode (3.1415, 7);
193 nodeList .append (cNodel) ;

194

195 nodelist.append (new IntNode (3)) ;

196

f)Note:

fork () was used by the debugger both to create the snapshot and to clone it.

28

Intel(R) Debugger (IDB) Manual

Part Il. A Guide to Using the Intel® Debugger

A Guide to Using the Intel® Debugger

This section provides most of the information needed to make expert use of the debugger. From
this section the user will learn how to

Prepare a program for debugging
Start the Debugger
Give commands to the Debugger
Run the program under Debugger control
Locate the site of a problem
Look around at the code, the data, and other process information
Modify the process
Continue execution of the process
Use snapshots as an undo mechanism
Debug optimized code
This section also addresses
Support limitations

Context for executing commands

Preparing a Program for Debugging. Expert Debugging. Overview

To facilitate debugging, you can prepare your source code and the compiler and linker
environment.

Preparing Your Source Code

You do not need to make changes to the source code to debug the program. However, you can
do the following to make debugging easier:

e If the source code has functions that can be called to output data structures, you can call
them from the debugger; you may want to create such functions.

29

Intel(R) Debugger (IDB) Manual

e Itis a good idea to make the following items part of your source code:
o An initial stall point if you cannot stop the process easily from within the
debugger.
o Assertions sprinkled liberally through the sources to help locate errors early.

Preparing the Compiler and Linker Environment

Debugging information is put into .o files by compilers. The level and format of information is
controlled by compiler options. Use the -g option with the Intel® C++ or Fortran (ifort) Compiler,
for example:

% icc -g hello.c

[}

% icpc -g hello.cpp

With the GNU* Compiler Collection (GCC, versions earlier than 3.x), use the -gdwarf-2 option:

% gcc -gdwarf-2 hello.c

]

% g++ -gdwarf-2 hello.cpp

See your compiler's reference page for more details.

The debugging information is propagated into the a.out (executable) or .so (shared library) by
the 1ink command.

The debugging information can cause .o files to be very large, causing long link times, but even
so it can also be incomplete.

If you are debugging optimized code, refer to the Debugging Optimized Code section of this
manual and the appropriate compiler documentation for information about -g and related
extended debug options and their relationship to optimization.

Starting the Debugger. Expert Debugging. Overview
You can start the debugger in the following ways:

From a command line
From within Emacs*
From within DDD*
From within Eclipse*

Starting the Debugger from a Command Line

When you invoke the debugger from a command line you can bring a program or core file under
debugger control, or you can attach to a running process.

The following is the command line syntax to invoke the debugger using the idb command:

30

Intel(R) Debugger (IDB) Manual

idb [dbx options][executable file[core file]]

Note that the set of recognized options depends on the mode. For example, -v option is valid in
DBX mode, but not in GDB mode.

dbx_options:
[-c file]
[-cd directory]
[-command file]
[-dbx]
[-echo]
[-emacs]
[-fullname]
[-gdb [gdb options 1]
[-gui]
[-help]
[-1 file]
[-T dir]
[-interactive]
[-maxruntime minutes]
[-nosharedobjs |
[-parallel launcher launcher args]
[-pid process id]
[-prompt string]
[-quiet]
[-tty terminal device]
[-V]
[-version]

gdb_options

31

Intel(R) Debugger (IDB) Manual

-cd dir
| -command file
| -dlirectory] dir
| -f[ullname]
| -gdb [gdb options]
| -help
| -interpreter name
| -nowindows
| -nw
| -plid] pid
| -qluiet]
| -silent
| -tty device
| -version
| -ui name

DBX mode refers to the debugger's command input mode that is "dbx like" in its command
syntax. It is not fully dbx compatible.

f)Note:

Options can be prefixed by a dash (-) or double dash (--) . Option names may be
abbreviated as long as the abbreviations are unambiguous. An option and its argument are
separated with one or more spaces or equal sign (=).

For example, to invoke the debugger on an executable file named a . out:

% idb a.out

To invoke the Debugger on a core file:

% idb a.out core

To invoke the debugger and attach to a running process when you do not know what file it is
executing:

32

% idb -pid 8492

DBX mode options

Intel(R) Debugger (IDB) Manual

The following table describes the dbx command options and parameters:

Options and Mode |Description

Parameters

-c file Default| Specifies an initialization command file. The default

-command file initialization file is .dbxinitidbsetup.idb. During
startup, the debugger searches for this file in the current
directory. If it is not there, the debugger searches your
home directory. This file is processed after the target
process has been loaded or attached to.

-cd dir Default|Specifies a new working directory.

-echo Default|Causes the debugger to print the prompt when running
in a non-interactive session.

-gdb Default|Causes the debugger to use GDB compatibility mode
and the gdb_options options set.

-gui Default|Activates the debugger's graphical user interface (GUI).

-emacs Default|Output file and line number markers for Emacs*.

-fullname

-help Default|Print help message and exit.

-i file Default|Specifies a pre-initialization command file. The default
pre-initialization file is .idbrc. The debugger searches for
this file during startup, first in the current directory and
then in your home directory. This file is processed
before the debugger has connected to the application
being debugged, so that commands such as set
$stoponattach = 1 will have taken effect when the
connection is made.

-I dir Default|Specifies the directory containing the source code for
the target program, in a manner similar to the use
command. Use multiple -1 options to specify more than
one directory. The debugger searches directories in the
order in which they were specified on the command line.

-interactive Default{Causes the debugger to act as though stdin is
isatty (), regardless of whether or not it is. This flag is
sometimes useful when using rsh to run the debugger.
Currently, the only effect is to cause the debugger to
output the prompt to stdout when it is ready for the next
line of input.

-maxruntime Default|Specifies the maximum allowable runtime in minutes for

minutes the debugging session.

-nosharedobjs Default|Prevents the reading of symbol table information for any

33

Intel(R) Debugger (IDB) Manual

shared objects loaded when the process executes. Later
in the debug session, you can enter the readsharedobj
command to read the symbol table information for a
specified object.

-parallel
launcher
launcher args

Default

Starts a debugging session on a parallel application
created by launcher with arguments launcher_args. See
Debugging Parallel Applications for details on using the
parallel debugging feature.

-pid pid

Default

Specifies the process ID of the process to be debugged.

-prompt string

Default

Specifies a debugger prompt. If the prompt argument
contains spaces or special characters, enclose the
argument in quotes (" "). You can specify a debugger
prompt when you start the debugger from a shell with
the -prompt option. The default debugger prompt is
(idb).

% idb -prompt ">> "
>> quit

Default Mode

You can also change the prompt by setting the $prompt
debugger variable. For example:

(idb) set $prompt = "newPrompt>> "
newPrompt>>

GDB Mode

Use set prompt prompt to specify a new prompt to
use henceforth. To see the prompt used by the
debugger, type the show prompt command.

(idb) set prompt (gdb mode)
(gdb mode) show prompt

idb's prompt is " (gdb mode) ".
(gdb mode)

f)Note:

There is a space at the end of the first line of the
example above. If the space is missed, the result
will be as follows:

(idb) set prompt (gdb mode)
(gdb mode) show prompt

idb's prompt is " (gdb mode) ".
(gdb mode)

-quiet

Default

Causes the debugger to start but not to print sign-on
message.

34

Intel(R) Debugger (IDB) Manual

-tty , Default|Specifies the input/output tty device for the user
terminal device program.
-v Default|Displays the banner, including the version.

-version

executable file |ALL |Specifies the program executable file.

core file ALL |Specifies the core file.

GDB mode options

The following table shows the GDB mode options:

Options and Mode|Description

Parameters

-cd dir GDB |Specifies a new working directory

-command file GDB |Specifies an initialization command file. The default

initialization file is .dbxinit. During startup, the debugger
searches for this file in the current directory. If it is not
there, the debugger searches your home directory. This
file is processed after the target process has been loaded
or attached

-dbx GDB |Causes the debugger to use the idb_options options set
(default)

-/directory dir |GDB |Searches for source files in dir

-fullname GDB |Outputs information used by Emacs*-GDB interface

-help GDB |Print help message and exit

- GDB |Selects a mode interpreter interface
interpreter name

-ui name

-nowindows GDB |Do not use a window interface

-nw

-pid pid GDB |See DBX mode option -pid

-quiet GDB |Do not print copyright message

-silent

-tty device GDB |Use device for input/output by the program being
debugged

-version GDB |Print version information and exit

Starting the Debugger Using Emacs*

You can control your debugger process entirely through the Emacs* Grand Unified Debugger
(GUD) buffer mode, which is a variant of shell mode. All the debugger commands are available,
and you can use the shell mode history commands to repeat them.

35

Intel(R) Debugger (IDB) Manual

The debugger supports:

e GNU* Emacs* Version 19 and higher
e XEmacs* Version 19.14 and higher

The information in the following sections assumes you are familiar with Emacs and are using
the Emacs notation for naming keys and key sequences.

Running IDB in Default (DBX) Mode

For each Emacs* session, before you can invoke the debugger, you must load the Intel®
Debugger-specific Emacs LISP code, as follows:

M-x load-file

At the Load file: prompt, type the path to the Intel® Debugger-specific Emacs LISP file, which
is located in the Intel IDB installation directory. For example:

/opt/intel idb/bin/idb.el

You can also place a load-file call in your Emacs initialization file (~/ .emacs). For example:
(load-file "/opt/intel idb/bin/idb.el")

To start the debugger with Emacs, type:

M-x idb

The following invocation line displays:

Run the Debugger (like this): idb

Edit the invocation line by typing the target program and pressing Return. Emacs remembers

the invocation. To debug the same program again, you need only press Return.

Emacs displays the GUD buffer and runs the debugger within it; the debugger starts and
displays its (idb) prompt, indicating readiness. The GUD buffer saves all of the commands you
type and the program output for you to edit. In general, interact with the debugger in the GUD
buffer as you would with a debugger started from a shell.

36

Intel(R) Debugger (IDB) Manual

One of the benefits of running the debugger from within Emacs is a closer correlation between
program execution and source. When your program stops (for example, at a breakpoint), Emacs
displays the source of your program in a second buffer (source buffer) and indicates the current
execution line with =>.

f)Note:

If the source is already loaded into a buffer, Emacs often finds that buffer. However, in
some NFS mounting situations, Emacs may use an alternate name for some directories
and will create a second buffer for your source (often with <2> appended to the name). Be
careful that you do not modify the original buffer or kill it outright.

Running IDB in GDB Mode

From the Emacs* "Tools" menu, select "Debugger..." The following invocation line displays:

Run the debugger (like this): gdb

Edit the invocation line by typing the path to IDB and the IDB options followed by the target
program, and pressing Return. For example:

/opt/intel idb/bin/idb -gdb -fullname myprogram
Emacs will remember the invocation. To debug the same program again, you need only press
Return.
By default, Emacs sets its current working directory to be the directory containing the target
program. Because the debugger does not do this when invoked directly, you may need to
change the source code search path when using the debugger from within Emacs. To set an
alternate source code search path, use the debugger map source directory command.
All Emacs* editing functions and GUD key bindings are available. For example:

You can execute a step command by typing the command in the GUD buffer.

You can select a line of code in the current source buffer and type a command to set a
breakpoint at that position:

C-x SPC

For more information on Emacs functionality and key bindings, see the Emacs documentation.
For example:

37

Intel(R) Debugger (IDB) Manual

M-x info

Then select the Emacs menu, then the debuggers menu.

XEmacs will come up with the source buffer displayed. Use c-x 2 and a buffer menu to select
the control buffer.

Starting the Debugger Using DDD*

GNU* DDD* is a graphical front-end for command-line debuggers that can be used with Intel
IDB.

DBX Mode

Specify --1ladebug and --debugger idb options in the shell command line, for example:

S ddd --ladebug --debugger idb a.out

If idb is not accessible through pATH environment variable, specify path to the debugger,
absolute or relative, for example:

$ ddd --ladebug --debugger /opt/intel idb/bin/idb a.out

GDB Mode

Specify --debugger "idb -gdb" options in the shell command line, for example:

$ ddd --debugger "idb -gdb" a.out

If idb is not accessible through pATH environment variable, specify path to the debugger,
absolute or relative, for example:

$ ddd --debugger "/opt/intel idb/bin/idb -gdb" a.out
Starting the Debugger Using Eclipse*

The Intel® C++ Compiler for Linux* includes a debugger integration with Eclipse* and the C/C++
Development Tools* (CDT). This functionality is an optional part of the debugger installation for
Intel® C++ Compilers for IA-32 and ltanium®-based systems.

38

Intel(R) Debugger (IDB) Manual

Eclipse is an open source software development project dedicated to providing a robust, full-
featured, commercial-quality, industry platform for the development of highly integrated tools. It
is an extensible, open source integrated development environment (IDE).

The CDT* (C/C++ Development Tools) project is dedicated to providing a fully functional C/C++
IDE for the Eclipse platform. CDT is layered on Eclipse and provides a C/C++ development
environment perspective.

The Intel® Debugger integration with the Eclipse/CDT IDE lets you debug your C/C++ projects
in a visual, interactive environment.

See also

www.eclipse.org/ for further information about Eclipse
www.eclipse.org/cdt/ for further information about CDT

Intel compilers web pages for more information about using Intel(® C++ Compiler with
the Eclipse Integrated Development Environment on Linux Systems

Starting Eclipse*
After you have installed the Intel® C++ Compiler for 32-bit or Itanium®-based applications, the
Intel® Eclipse integration support, and the Eclipse package, which contains a copy of Eclipse

and CDT* and is provided with the Intel® C++ Compiler, you can start Eclipse in two ways: you
can use the Intel supplied Eclipse launchers or invoke Eclipse directly yourself.

Eclipse Launchers

To invoke Eclipse with the Intel supplied Eclipse launchers, execute the iccec or idbec shell
script. With the default Compiler installation, execute iccec or idbec as follows:

/opt/intel/cc/9.1.xxx/bin/iccec
or

/opt/intel/idb/9.1.xxx/1idbec
where xxx indicates a package number.

The iccec Or idbec script opens the Eclipse IDE:

39

Intel(R) Debugger (IDB) Manual

b d Resource - Intel(R) Software Development Products

File Edit Navigate Search Project Run Window Help

e @ @ Qe |2 e - 2 [Resource|

oo

2z Outline 22 = 0| HTasks 2 @ ® 3 v =0
\An outline is not available, 0 items
| vl ¥ |Descn'ptinn Resource In Fr
(Kl |]

L | J

You can also use iccec Or idbec t0 pass Eclipse-specific parameters, such as:

-data <path> - sets the location for the Eclipse workspace

-showlocation - shows the location of the workspace in the Eclipse window title bar.
For example:
/opt/intel/cc/9.1.xxx/bin/iccec -data /cpp/eclipse -showlocation

From the Eclipse Help menu, select Help Contents > Workbench User's Guide > Tasks >
Running Eclipse for the complete list of Eclipse startup parameters.

Invoke Eclipse Directly

To invoke Eclipse directly, some additional setup is required to use the Intel® C++ Compiler and
the Intel® Debugger within Eclipse. This setup is required if you are using the versions of
Eclipse and CDT provided by Intel in the Eclipse package and you want to invoke Eclipse
directly. It is also required if you are using your own version of Eclipse and CDT obtained from
www.eclipse.org/ with the Intel Eclipse compiling and debugging support being integrated.

40

Intel(R) Debugger (IDB) Manual

f)Note:

As an option, during installation of the compiler and debugger, you can integrate the Intel®
Eclipse Compiler and Debugger support into an already existing version of Eclipse.

If you want to use the Intel® C++ Compiler and/or the Intel® Debugger within Eclipse, run the
SCripts iccvars.sh Or iccvars.csh. The idbvars.sh Or idbvars.csh Scripts should be
invoked prior to invoking Eclipse. These scripts are automatically provided when the compiler
and debugger are installed. After running these scripts, you can invoke and run Eclipse with the
Intel® Compiler and the Intel® Debugger. To invoke Eclipse, run the executable "eclipse.” This
executable is located in the top level directory used to install Eclipse. With a default compiler
installation, where the user selects to install the Intel supplied Eclipse package, invoke the
executable as follows:

/opt/intel/eclipsepackage/eclipse version/eclipse/eclipse
where “eclipse version” is a version of Eclipse.
You can specify Eclipse-specific parameters to the eclipse command.

From the Eclipse Help menu, select Help Contents > Workbench User's Guide > Tasks >
Running Eclipse for the complete list of Eclipse startup parameters.

Debugging with the Intel® Debugger in Eclipse*

When your C/C++ project is built and ready for debugging, you can follow the steps below to
invoke the Intel® Debugger (See Compiler or Eclipse/CDT* documentation for details on
creating and building projects):

1.Select the executable to debug.

Choose >Run > Debug...from the main menu.

41

Intel(R) Debugger (IDB) Manual

File Edit Nayigate Search Run Project Window Help
|rvB & | @vaivEv@r [0 Qv |® 7 | ever | ¢ 8
(@C/Ces Projects 52 Navigator = 81| (@ manc it Bl
i e @B % = #include <iostream> E_
V’_lél'_hllm int main(int argc, char *argv(])
std: icout << "Hello World!" << std::endl;
exit(0);
[= Debug
= [@ main.C
U jostream
@ main
[+
[sl z [2] |
Problems [Console 2 Properties BRI L| e B.e=0
<terminateds Helloword [C/Cr-+ Local Application] Site/sptfusr/sbmacchyEclipse/Helloword/DebugiHelloWord (67/05 11:37 Al
Hello World! -i
K31 I]| |Ee] ID
| Wiitable Smart Inseit 9.1

2. Click the Debugger tab.

Choose the Intel® Debugger from the Debugger drop-down list.

42

Configurations:

3¢ C/C++ Attach to Local Ap

Create, manage, and run configurations

Intel(R) Debugger (IDB) Manual

Name: ! Hellowaorld

7 5 C/C++ Local Application

Main | t9=Arguments | ﬁEmrimnment| %Debugged | Somce| Egommﬂn|

B Helloworld

G C/C++ Postmortem debug
Java Applet

[71 Java Application

Ju JUnit

j{’. Junit Plug-in Test

[Z, Remote Java Application
& Run-time Workbench

I v | Stop at main() on startup

Debugger: i Intel(R} Debugger

Debugger Options
General | Shared Libraries |

Debugger Location |idb | ‘ Browse... ‘

Command File | H Browse... ‘

(Warning: Some commands in this file may interfere with the startup operation of the
debugger, for example "run".)

3. If you have started Eclipse with iccec or idbec, or you ran idbvars.sh or idbvars.csh, skip

step 4.

4. If you have not started Eclipse with iccec Or idbec, Or you did not run idbvars.sh or
idbvars.csh, put the full path to the debugger executable in the "Debugger Location" field:

43

Intel(R) Debugger (IDB) Manual

“ Debug

Create, manage, and run configurations

Configurations: Name: !-[-'IE”OWGHCI |

3¢ C/C++ Attach to Local Ap

= 3¢ C/C++ Local Application
s PP Majn|l><l=hrgument5 | ﬁEmrimnment| %Debugger| @Sﬂu!ce| Egammﬂn|
B Helloworld _
¢ C/C++ Postmortem debug Debugger: E__F_nreI(RJ Debugger _ Stop at main() on startup
G Java Applet
=J i Debugger Options
3] Java Application -
Ju JUnit General | Shared Lihrade5|
“ﬁ)‘ JUnit Plug-in Test Debugger Location i,'apr,!intel,'idb,’g.t}fbin,fidb | ‘ Browse... ‘
@, Remote Java Application :
& Run-time Workbench Command File | | Browse...
(Warning: Some commands in this file may interfere with the startup operation of the
debugger, for example "run".)
[<] | [+]
New ‘ ‘ Delete ‘ Apply | ‘ Revert ‘
| Debug ‘ ‘ Close ‘

5. Click the Debug button.

For subsequent debug sessions, you just have to select the program in the navigator tab and
then select Run > Debug As > C/C++ Local Application (or to click the bug icon in the

toolbar).

The perspective will switch to the debug perspective like the example below:

44

Intel(R) Debugger (IDB) Manual

bl DEBUG ~ main.C - Eclipse Platform
File Edit Mavigate Search Run Project Window Help
-

= 1 main{ at ../main.C:5

». Debugger Process (6/7/05 1:16 PM)
wi fsitejsptjusr3fsbmacchi/Eclipse/MHelloWord/DebugiHelloWorkd (6/7/05 1:16 PM

|G E & B 0 Qr @[ErDy | § § & | Foebg) i
'-‘t;&mhug-zi e o B Red| 2T 5 F v @O -vanables 2 . Breakpoints Rggmrs:-mm-mshmd ubm-nes-smals- =g
= #¢ HelloWorld [C/C++ Local Application] . . - o4 B 'ﬁ- x % *
= & InteliR) Debugger (6/7/05 1:16 PM) (Suspendad) P arge = 1
= @ Thread [1] (Suspended) [+ #® argy = Oxbfffeatd

Writable Smart insent | 5:1

[«] [« [*]
B main.Cc - B E=outline & =
#include <iostream> = LR N0 v
int main(int arge, char =argv[]) o iostream
@ maln
» std:rcout << "Hello Worldl" << std::endl;
exit(0);
}
]
al D]
Blconsole 22 . Tasks e G o B+»F0
HelloWorld [C/C++ Local Application] Debugger Process (6/7/05 1:16 PM)
Ox4d00e7000 Ox4010Bcff No T J1iBJtlsfTibn-2.3. 2. 50 Z‘
0x40109000 0x401101bb No /1ib/1libgec_s-3.2,2-20030225,50.1 =
Ox42000000 O0x42132f07 No /lib/tls/1ibc-2.3.2.80
type = int
type = char **
=
[«] |l? =

Ending a Debugging Session

DBX Mode

To exit the debugger, use the quit command:

quit command
i quit
Alternatively, you can type q or exit, which are pre-defined aliases for quit.

GDB Mode

To exit the debugger, use quit or the g command.
Optionally, you can specify debugger exit status. Example:
quit command

: quit[exit status]

| q[exit status]

45

Intel(R) Debugger (IDB) Manual

exit status

. expression

Getting Help

To access the online help about debugger commands, use the help command.

DBX Mode

help command

: help [topic]

Enter help to see a list of help topics. Enter help command to see a list of debugger commands.
Enter help idb to see a list of function-oriented debugger commands.

GDB Mode

help command
: help [topic]
| h [topic]

| complete [args]

Use the help or h command to display a list of command groups. Use the help command with a
group name or command name to get more detailed help.

Use the complete args command to list all the possible completions for the beginning of a
command, where args specifies the text to be completed.

Giving Commands to the Debugger. Overview

The debugger has several different mechanisms you can use to direct its behavior. It receives
input from:

e Environment variables
e Command line
e stdin, which is usually one of the following:

46

Intel(R) Debugger (IDB) Manual

o Aterminal
o Afile
o A pipe connecting the debugger to an editor (usually Emacs*)

Other files:

1. At startup, before attaching to or starting the target executable and before processing
command line qualifiers, commands in:
1. .idbrc, if available, otherwise
2. ~/.idbrc, if available
2. Just before accepting command input from you:
1. ./dbxinit, if available, otherwise
2. ~/.dbxinit, if available
3. Files specified in the source command

Some examples of the difference between .idbrc and .dbxinit are shown in the following
table:

Example Command If Used in .idbrc If Used in .dbxinit
Assume the command "set The debugger attaches and | The debugger attaches
$stoponattach = 1" iSinone |stops. and waits for you to

of these files and you invoked press Ctrl+C;

the debugger as: subsequent attaches

% idb -pid process id will stop.

executable file

Assume the command "stop in|The debugger generates a |The debugger sets the
main" iS in one of these files. message that there is no breakpoint (assuming
main in which to place a there is @ main in the
breakpoint, because there [target).

is no target yet.

Debugger's Command Processing Structure. Expert Debugging
The debugger processes commands as follows:
1. Prompts for input.
e Obtains a complete line from the input file and performs:
o History replacement of the line

o Alias expansion of the line

1. Parses the entire line according to the parsing rules for the current language.
2. Executes the commands.

47

Intel(R) Debugger (IDB) Manual

Interrupting a Debugger Action

To interrupt program execution or to abort a debugger action, press Ctrl+C. This returns the
debugger to the prompt.

Entering and Editing Command Lines

The debugger reads lines from stdin. The debugger supports command line editing when
processing stdin if stdin is a terminal and the debugger variable $editline iS non-zero.
However, by default, $editline is zero, and the standard Command Prompt window's
capabilities are used. If the debugger's line editing is needed, use the set command to change
the setting, and set the terminal width to the correct value. After editing, press the Enter key to
send the line to the debugger.

e Use the left and right arrow keys to edit parts of the line.
e Use the up and down arrow keys to recall and edit earlier commands.

ﬂNote:

When you use the up and down arrow keys, the debugger skips duplicate commands. To
see a complete list of the commands you have entered, use the history command.

The debugger copies each line from stdin to the record input file, if you have requested that
file.

The debugger scans each line from the beginning, looking for backslash (\) characters, which
‘quote’ the immediately following character. If the line ends in a quoted newline, then another
line is similarly processed from stdin and appended to the first one, with the quoted newline
removed.

Whether or not command line editing is enabled, you can always use your terminal's cut-and-
paste function to avoid excessive typing while entering input.

This section gives information about
History Replacement of the Line
Alias Expansion of the Line (DBX Mode only)

Environment Variable Expansion

History Replacement of the Line
Leading spaces and tabs are removed from the assembled line.

For assembled lines that begin with an exclamation point (1), the following rules apply:

48

Intel(R) Debugger (IDB) Manual

o If the second character is also an exclamation point (1), the assembled line is replaced
by the most-recent entry from the history list. Any remaining characters after the digits or
! are appended to the assembled line.

e Otherwise, spaces and tabs are skipped, and one of the following actions occurs:

o If the next character is a digit, then the digits are read as a decimal humber, and
the assembled line is replaced by that line from the history list, with 1 being the
oldest entry.

o If the next character is a hyphen (-), then the digits following it are read as a
decimal number, and the assembled line is replaced by that line from the history
list, with -1 being the most-recent entry.

o Otherwise, the rest of the line is used to find the most-recent command that
starts with those characters, and the assembled line is replaced by that line from
the history list.

In the first two cases, any remaining characters after the digits are appended to the assembled
line.

For lines that begin with a caret (*), these rules apply:

e The line is analyzed to extract the following:
o The characters following the first caret but before a second caret, or until the end
of line. These characters are the target string.
o Ifthere is a second caret, the characters following it but before a third caret, or
until the end of line. These characters are the replacement string.
o Ifthere is a third caret, the characters following it to the end of the line. These
characters are the append string.
¢ The most-recent entry from the history list is checked to see if it has an occurrence of
the target string. If it does not, an error is reported.
e The assembled line is replaced by this most-recent entry, except that the first occurrence
of the target string is replaced by the replacement string (possibly zero length), and the
append string is appended to the assembled line.

The assembled line is now appended to the history list.

Exclamation points and carets cannot be used in command lists built with braces ({}); for
example, {print3; !!3} will not parse. They may be used in scripts.

History in a command list is not limited by braces, but goes all the way back. For example:

(idb) print 1

1

(idb) stop at 182 { print 2; history 3 }

[#1: stop at "src/x list.cxx":182 { print 2; history 3 }]
(idb) run

11: print 1
12: stop at 182 {print 2; history 3}

13: run
[1] stopped at [int main(void) :182 0x08052e8f]
182 List<Node> nodelist;

49

Intel(R) Debugger (IDB) Manual

f)Note:

Commands in breakpoint action lists are not entered into the history list.

Alias Expansion of the Line (DBX Mode only)

The assembled line is now subjected to alias expansion. This is done by scanning the line,
looking for pound (#), semicolon (;), and left brace ({) characters that are not inside strings.

Strings are recognized by their opening and closing double or single quotes. Backslash
guotation causes a quote character not to terminate the string.

Pound (#) characters and all that follow to the end of the line are discarded, unless the
pound character is the very first character in the line. If that is the case, the pound
character is not discarded because a completely empty line has special meaning. An
exception is made for pound (#) characters that are surrounded by non-whitespace
characters, such as "file#name". This is needed because the tmpnam standard library
function generates file and directory names containing pound (#) characters.

The debugger performs alias expansion as follows:

50

1.

At the beginning of the line, and immediately after semicolon (;) or left brace ({)
characters not inside strings, the debugger checks for the occurrence of an alias
identifier.

If it finds an alias identifier, it associates the formal parameters of the alias with the
specified actual parameters.

If the alias has no formal parameters, this match consumes no more of the input.

a. If there are formal parameters, white space is skipped, and then a ' (' character is
checked for and skipped. The characters following the ' (' up to the first non-
nested',' or')' character are associated with the formal parameter.

Again, the characters within strings are not tested. Nesting is caused by ' (' and
')' characters outside of strings.

b. If there are more formal parameters, the '," character is treated as the terminator
of the actual parameter. It is skipped and processing continues as for the first
parameter.

After the alias and the correct number of actuals have been identified, all the characters
from the start of the alias identifier to its end (no parameters) or the trailing ') ' (one or
more parameters) are replaced by the expansion.

Within the definition of the alias, all occurrences of the formal parameter are replaced by
the actual parameter, regardless of whether or not it is in a string.

Environment Variable Expansion

The debugger expands environment variables and the leading tilde (~) in the following cases:

Intel(R) Debugger (IDB) Manual

As part of a command in which a file name or a directory is expected.

In the arguments to run Or rerun (dbx).

As in any shell, you can group an environment variable name using a pair of curly braces ({}),

and quote a dollar sign ($) by preceding it with a backslash (\).

The following table shows how various environment variables expand. It assumes that the home
directory is /usr/users/hercules and the environment variable BIN is

/usr/users/hercules/bin.

Command with Environment Variable

Expands into

load ~/a.out

load /usr/users/hercules/a.out

load $BIN/a.out

load /usr/users/hercules/bin/a.out

load ${BIN}2/a\$b

load /usr/users/hercules/bin2/asb

map source directory $BIN ${BIN}2

map source directory
/usr/users/hercules/bin
/usr/users/hercules/bin2

stop at "$BIN/a.out":20

stop at
"/usr/users/hercules/bin/a.out":20

run $BIN/a.out ~/core

run /usr/users/hercules/bin/a.out
/usr/users/hercules/core

Syntax of Commands

The debugger has different parsing rules for each of the different languages it supports. A line is
processed according to the current language, even if executing the line will change the current
language. This section discusses the following topics:

Lexical Elements of Commands
Grammar of Commands
Categories of Commands

Keywords Within Commands

Using Braces to Make a Composite Command

Conditionalizing Command Execution

Debugger Variables

51

Intel(R) Debugger (IDB) Manual

Lexical Elements of Commands

For the debugger to parse the line, it must first turn the line into a sequence of tokens, a process
called "tokenizing" or "lexical analysis". Tokenizing is done with a state machine.

As the debugger starts tokenizing a line into a command, it starts processing the characters
using the lexical state LKEYWORD. It uses the rules for lexical tokens in this state, recognizing
the longest sequence of characters that forms a lexical token.

After the lexical token is recognized, the debugger appends it to the tokenized form of the line,
perhaps changes the state of the tokenizer, and starts on the next token.

For more detailed information on lexical elements, see Lexical Elements of Commands in Part
.

Grammar of Commands

Some pieces of the grammar were modified from a grammar originally written by
James A. Roskind, and covered by a copyright that requires a statement that...
Portions Copyright (c) 1989, 1990 James A. Roskind
Each command line must parse as one of the following:
input
command_1ist
| comment
A command_1list is a sequence of commands that are executed one after the other.
command_list
command ;...
| command ;
| command
A comment is a line that begins with a pound (#) character.
comment

#

Any text after an unquoted pound character is ignored by the debugger. If the first non-
whitespace character on a line is a pound character, the whole line is ignored.

52

Intel(R) Debugger (IDB) Manual

f)Note:

The difference between a blank command line and a command line that is a comment is
that a blank line entered from the keyboard will cause the debugger to repeat the previous
command and the comment line will not. Blank lines not entered from the keyboard are
treated as comment lines.

Categories of Commands

Commands usually start with, and often contain, keywords. These keywords must be lowercase.

DBX Mode

Following is a list of debugger command categories:
command
alias command

| attach command

| braced command list

| breakpoint command

| browse source command

| call stack command

| command repetition command

| continue command

| detach command

| detach remote command

| dbgvar command

| disconnect remote command

| edit file command

| environment variable command

| execute commands from file command

| execute shell command

| help command

53

Intel(R) Debugger (IDB) Manual

| history command

| if command

| ki1l command

| load command

| look around command

| machinecode level command
| modifying command

| multiprocess command

| parallel debugging command
| quit command

| record command

| run command

| snapshot command

| shared library command

| thread command

| unload command

| while command

Keywords Within Commands

If the identifiers thread, in, at, and if occur within the expression in the following commands,
the Debugger treats them as keywords unless they are enclosed within parentheses (()).

where expression
stopi expression
trace expression
tracei expression
wheni expression

For example, if your program has thread defined as an integer, enter the following command to
inspect the first thread levels of the stack.

For example:

(idb) where 3

54

Intel(R) Debugger (IDB) Manual

>0 0x0804868e in c() "src/x whereAmbigParse.c":7
#1 0x080486ad in b() "src/x whereAmbigParse.c":12
#2 0x080486bf in a() "src/x whereAmbigParse.c":13
(idb)

(idb)

(idb)

(idb) where three(3)

>0 0x0804868e in c() "src/x whereAmbigParse.c":7
#1 0x080486ad in b() "src/x whereAmbigParse.c":12
#2 0x080486bf in a() "src/x whereAmbigParse.c":13
(idb)

(idb)

(idb)

(idb) where thread (1)
Stack trace for thread 1

>0 0x0804868e in c() "src/x whereAmbigParse.c":7

#1 0x080486ad in b() "src/x whereAmbigParse.c":12

#2 0x080486bf in a() "src/x whereAmbigParse.c":13

#3 0x080486da in main() "src/x whereAmbigParse.c":17

#4 0xb739e748 in libc start main(...) in /1lib/tls/libc-2.3.2.s0

#5 0x08048551 in start(...) in /home/user/examples/x whereAmbigParse
(idb)

(idb)

(idb)

(idb) where three(3) thread (1)
Stack trace for thread 1

>0 0x0804868e in c() "src/x whereAmbigParse.c":7
#1 0x080486ad in b () "src/x whereAmbigParse.c":12
#2 0x080486bf in a() "src/x whereAmbigParse.c":13
(idb)

(idb)

(idb)

(idb) where (thread(3))

>0 0x0804868e in c() "src/x whereAmbigParse.c":7
#1 0x080486ad in b () "src/x whereAmbigParse.c":12
#2 0x080486bf in a() "src/x whereAmbigParse.c":13
(idb)

(idb)

(idb)

Using Braces to Make a Composite Command

It is possible to surround a command_1ist with braces to make it work like a single command.
Some places require a braced_command_1list just for readability, or to assist the debugger in
understanding your input.

braced command list

: { command list }
Conditionalizing Command Execution

if command

The debugger provides the i£ command , whose behavior depends on the value of an
expression.

if command

55

Intel(R) Debugger (IDB) Manual

. if expression braced_command_list [else clause]
else clause

:else braced command list

In this command, the first braced command 1list is executed if expression evaluates to a non-
zero value; otherwise, the braced command 1list inthe else clause iS executed, if specified.

For example:

(idb)

(idb) assign pid = 0

(idb) if (pid < $c) { print "Greater" } else { print "Lesser" }
Greater

set $c =1

while command

In addition to the i £ command, the debugger also provides the while command.
while command
while expression braced_command_list

The commands in the braced command_1ist will execute as long as expression evaluates to a
non-zero value.

For example:

(idb) stop at 167

[#1: stop at "src/x list.cxx":167]

(idb) run

The list is:

[1] stopped at [void List<Nodex>::print (void) :167 0x0804c632]
167 cout << "Node " << i ;

(idb)

(idb) while (currentNode-> data != 5) { print "currentNode-> data is ",

currentNode-> data; cont }

currentNode-> data is 1

Node 1 type is integer, value is 1

[1] stopped at [void List<Nodes>::print (void) :167 0x0804c632]
167 cout << "Node " << i ;

currentNode-> data is 2

Node 2 type is compound, value is 12.345

parent type is integer, value is 2

[1] stopped at [void List<Node>::print (void) :167 0x0804c632]
167 cout << "Node " << i ;

currentNode-> data is 7

Node 3 type is compound, value is 3.1415

parent type is integer, value is 7

[1] stopped at [void List<Nodes>::print (void) :167 0x0804c632]
167 cout << "Node " << 1 ;

currentNode-> data is 3

Node 4 type is integer, value is 3

56

Intel(R) Debugger (IDB) Manual

[1] stopped at [void List<Node>::print (void) :167 0x0804c632]
167 cout << "Node " << i ;

currentNode-> data is 4

Node 5 type is integer, value is 4

[1] stopped at [void List<Nodex>::print (void) :167 0x0804c632]
167 cout << "Node " << i ;

(idb)

(idb) print currentNode-> data

5

In this example we use the while command to continue the execution of the debuggee until the
_data field in currentNode is 5.

Note that if the commands in the braced command 1list do not change the state of the
debuggee process, such as the value of a variable or the PC register, then the while command
can go into an infinite loop. In this case, press Ctrl+C to interrupt the loop, or type 'n' when you
see the "More (n if no)?" prompt if your while command generates output and the paging is
turned on.

Debugger Variables

Debugger variables are pseudovariables that exist within the debugger instead of within your
program. They have the following uses:

e Support some limited programming capabilities within the debugger command language
e Allow you to examine and change various debugger options
e Allow you to find out exactly what various debugger commands did

The following table lists the three different varieties of debugger variables:

Kind of variable Purpose

User-defined You create these and can set them to a value of any type.

variables

Preference You modify these to change debugger behavior. You can only set a

variables preference variable to a value that is valid for that particular
variable.

Display/state These variables display the parts of the current debugger state. You

variables cannot modify them.

For more information about debugger variables, see Debugger Variables.

The following commands deal specifically with debugger variables:

dbgvar command

: set dbgvar name = expression

57

Intel(R) Debugger (IDB) Manual

| set dbgvar name
| set

| unset dbgvar name

The dbgvar name should not exist anywhere in your program, or you may confuse yourself
about which of the occurrences you are actually dealing with. The predefined debugger
variables all start with a dollar sign (3), to help avoid this confusion. It is strongly recommended
that you follow the same practice; in a future release, all debugger variables will be required to
start with a dollar sign.

f)Note:

If a debugger variable exists that shares a hame with a program variable, and you print an
expression involving that name, which of the two variables the debugger finds is undefined.

The first form creates the debugger variable if it does not already exist. It then sets the value of
the debugger variable to the result of evaluating the expression. For example:

(idb) set S$myLoopCounter = 0
(idb) print $myLoopCounter
0

The second form is equivalent to the command set dbgvar name = 1. For example:

idb) print $stoponattach

) set $stoponattach

idb
idb) print $stoponattach

P ~—~0 —~

The set form shows all the debugger variables and their values:

(idb) set

S exitcode = 0
Sascii = 0

Sbeep = 1
Scatchexecs = 0
scatchforkinfork = 0
Scatchforks = 0
Schildprocess = 0
Scmdset = "dbx"

Scurcolumn = 0

Scurevent = 0

Scurfile = "src/x list.cxx"
Scurfilepath = "../src/x list.cxx"
Scurline = 182

Scurpc = 0x8052df4

58

Scurprocess = 17633
Scursrcline = 182
Scursrcpc = 0x8052df4
Scurthread = 1
Sdbxoutputformat = 0
Sdbxuse = 0
Sdebuggerpid = 17631
Sdecints = 0

Sdisasm shows unwind = 0
Sdoverbosehelp = 1
Seditline = 1

Seventecho = 1
sfloat80bit = 0
Sfloatshrinking

=1
Sframesearchlimit = 0
Sfuncsig = 1

$gdb compatible output = 0
Sgivedebughints = 1
Shasmeta = 0

Shexints 0

Shighpc = (internal debugger function)

Shistorylines = 20
Sindent = 1
$isaEM64T = 0
$isalAl32 = 1
SisalIPF = 0

$lang = "C++"

Slasteventmade = 0

$Slc ctype = "en US.IS08859-1"
Slistwindow = 20

Smain = "\"src/x list.cxx\" main"
Smaxarrlen = 1024

Smaxlines = 5000

Smaxstrlen = 128
Smemorymatchall = 0
SmyLoopCounter = 0
Soctints = 0
Soverloadmenu = 1
Spage = 0
Spagewindow = 0
Sparentprocess = 0
Spimode = 1
Sprompt = " (idb) "
Sreadtextfile = 0
Sregstyle = 1

Srepeatmode = 1
Sreportsotrans = 0
$Sshowlineonstartup = 0

Sshowwelcomemsg = 1
Sstack levels = 50
$stackargs = 1
$statusargs = 1

Sstepgl = 0
$stoponattach = 1
Sstopparentonfork = 0
Ssymbolsearchlimit = 100

Sthreadlevel = "native"
Stracesyscalls = 0
Susedynamictypes = 1
Sverbose = 0

Intel(R) Debugger (IDB) Manual

To see the value of just one debugger variable, print it. For example:

59

Intel(R) Debugger (IDB) Manual

(idb) print $catchexecs
0

The unset form deletes the debugger variable. Some predefined debugger variables either
cannot be deleted or are automatically recreated in the future when needed. For example:

(idb) unset $myLoopCounter

(idb) print $myLoopCounter

Symbol "$myLoopCounter" is not defined.

(idb) unset $catchforks

Warning: The debugger variable "S$catchforks" was not unset because it is an
idb predefined variable

Scripting or Repeating Previous Commands. Expert Debugging

To repeat the last command line, enter two exclamation points (1) or press the Enter key. You
can also enter 1-1.

command_repetition command
1
| ! integer
| !- integer
| ' string

To repeat a command line entered during the current debugging session, enter an exclamation
point followed by the integer associated with the command line. (Use the history command to
see a list of commands used.) For example, to repeat the seventh command used in the current
debugging session, enter 7. Enter ! -3 to repeat the third-to-the-last command. See also
History replacement of the line.

To repeat the most-recent command starting with a string, use the last form of the command.
For example, to repeat a command that started with bp, enter !bp.

Following are other ways to reuse old commands and save typing effort:

e Use a completely empty line to repeat the last command but not the last line, which
could have been a comment or a syntactically invalid attempt at a command.
Immediately pressing the Enter key is the recommended way of doing this.

e Use command line editing to recall and modify commands you have already entered.

e ltis often useful to have a text editor up and running while debugging, and use it to
assemble short scripts that you can copy and paste to the debugger. Keep a separate
text file that has such scripts in it, as well as other notes you wish to keep. This provides
continuity from one debugging session to the next, and from one day to the next.

60

Intel(R) Debugger (IDB) Manual
If you place commands in a file, you can execute them directly from the file rather than cutting
and pasting them to the terminal. For example:
execute commands from file command
source filename

| playback input filename

Use the source command to read and execute commands from a file. (You can also execute
debugger commands when you invoke the debugger by creating an initialization file named
.dbxinit.) These commands can be nested, and as each comes to an end, reading resumes from
where it left off in the previous file.

Be aware, however, that blank lines in these files do not repeat the last command, unlike what
blank lines do when entered from the terminal. Format the commands as if they were entered at
the debugger prompt.

Use the pound character (#) to create comments to format your scripts.

The following is an example debugger script:

(idb) sh cat ../src/myscript
step
where 2

The following example shows how to execute it:

(idb) run
[1] stopped at [int main(void) :187 0x08052ec4]
187 nodeList .append (newNode) ; {static int somethingToReturnTo;

somethingToReturnTo++;

(idb) source ../src/myscript

stopped at [void List<Nodes>::append(class Node* const) :148 0x0804c55e]
148 if (! firstNode)

>0 0x0804c55e in ((List<Node>*)0xbfffce78) -

>List<Node>: :append (node=0x805e5f8) "src/x list.cxx":148

#1 0x08052edc in main() "src/x_ list.cxx":187

When a command file is executed, the value of the spimode debugger variable determines
whether the commands are echoed. If the $pimode variable is set to 1, commands are echoed,;
if spimode is set to O (the default), commands are not echoed. The debugger output resulting
from the commands is always echoed.

Recording Input and Output

To help you make command files, as well as to help you see what has happened before, the
debugger can write both its input and its output to files, as follows:

61

Intel(R) Debugger (IDB) Manual

record_command
record i0 [filename]
| record input [filename]
| recordoutput [filename]
| unrecord io
| unrecord input
| unrecord output

Use record input to save debugger commands to a file. The commands in the file can be
executed using the source command or the playback input command.

If no file name is specified, the debugger creates a file with a random file name in /tmp as the
record file. The debugger issues a message giving the name of that file.

To stop recording debugger input or output, redirect as shown in the following example, use the
appropriate version of the unrecord command, or exit the debugger:

(idb) record input /dev/null
(idb) record output /dev/null

The following example shows how to use the record input command to record a series of
debugger commands in a file named myscript:

(idb) record input myscript
(idb) stop in main
[#1: stop in int main(void)]

(idb) run
[1] stopped at [int main(void) :182 0x08052e0f]
182 List<Node> nodelist;

(idb) unrecord input

This example results in the following recorded input in myscript:

(idb) sh cat myscript
stop in main

run

unrecord input

62

Intel(R) Debugger (IDB) Manual

The record output command saves the debugger output to a file. The output is
simultaneously written to stdout (normal output) or stderr (error messages). For example:

(idb) record output myscript
(idb) stop in List<Node>: :append
[#2: stop in void List<Nodes::append(class Node* const)]

(idb) cont
[2] stopped at [void List<Nodes>::append(class Node* const):148 0x0804c55e]
148 if (! firstNode)

(idb) cont to 156
stopped at [void List<Nodes>::append(class Node* const) :156 0x0804c5db]

156
(idb) unrecord output

After the above commands are executed, myscript contains the following:

(idb) sh cat myscript
[#2: stop in void List<Nodes>::append(class Node* const)]
[2] stopped at [void List<Node>::append(class Node* const):148 0x0804c55e]

148 if (! firstNode)
stopped at [void List<Nodes>: :append(class Node* const) :156 0x0804c5db]
156

The record io command saves both input to and output from the debugger. For example:

(idb) record io myscript

(idb) stop in main

[#1: stop in int main(void)]

(idb) run

[1] stopped at [int main(void) :12 0x120001130]
12 int i;

(idb) quit

% cat myscript

(idb) stop in main

[#1: stop in int main(void)]

(idb) run

[1] stopped at [int main(void) :12 0x120001130]
12 int i;

(idb) quit

If input or output is already being recorded, a new record input command will close the old
file and record to a new one, rather than record simultaneously to two files. In that connection,
note that record io is equivalent to the combination of record input and record output,
and will cause any open recording files to be closed.

Note that the prompt itself is only recorded for record io.

63

Intel(R) Debugger (IDB) Manual

Viewing the Command History

You can see all the commands you have already entered by using the history command. Use
history number to indicate how many commands to show, starting with the most recent. If you
do not specify history number, the value of the debugger variable $historylines (default 20)
is used to determine the number of previous commands shown. See also History replacement
of the line.

history command

history [integer constant]

For example:

(idb) history 7

18: stop at 182

19: run

20: stop at 103

21: delete 1

22: cont

23: print "history EXAMPLE START"
24: history 7

Defining Aliases (DBX mode only)

You can extend the set of debugger commands by defining aliases.

When the debugger is tokenizing a command line, it expands aliases and then retokenizes the
expansion.

alias command
alias [alias name]
| alias alias name[(argument_name, ...)] string

| unalias alias name

The following example shows how to define and use an alias:

(idb) alias cs

alias cs is not defined

(idb) alias cs "stop at 186; run"

(idb) cs

[#1: stop at "x list.cxx":186]

[1] stopped at [int main(void) :186 0x120002420]
186 IntNode* newNode = new IntNode (1) ;

64

Intel(R) Debugger (IDB) Manual

The following example further modifies the ¢s alias to specify the breakpoint's line number when
you enter the ecs command:

(idb) alias cs (x) "stop at x; run"

(idb) cs(186)

[#2: stop at "x list.cxx":186 |

Process has exited

[2] stopped at [int main(void) :186 0x120002420]
186 IntNode* newNode = new IntNode (1) ;

ﬂNote:

No warning is given if the alias name already has a definition as an alias. The old
definition will be replaced by the new one.

Use the unalias command followed by an alias name to delete the specified alias.

Executing Shell Commands

You can have the debugger execute a call to the operating system's system function. This
function is documented in system(3). The call results from the sh (dbx) or she11 (gdb)
commands.

DBX Mode

execute shell command
: sh string

For example, you can execute a system command through a shell from the debugger by issuing
the following command:

(idb) sh uname -s
Linux
(idb)

To execute more than one command at the specified shell, spawn a shell as follows, for
example:

(idb) sh csh -f£
% ls out

out

% 1ls *.Db
recio.b

stdio.b

$ exit
(idb)

65

Intel(R) Debugger (IDB) Manual

GDB Mode

execute shell command

: shell string

For example:

(idb) shell uname -s
Linux
(idb)

To execute more than one command at the shell, spawn a shell as follows:

(idb) shell bash --norc
$ 1ls out

out

S 1ls *.b

recio.b

stdio.b

S exit

(idb)

Invoking Your Editor (DBX Mode Only)

You can use the edit command to invoke the editor defined by the EDITOR environment
variable.

edit file command
: edit [string]

The editor is given the string as the file name to edit. If no file name is specified, the editor is
given the current file. If no current file exists, the editor is started without a file.

If the EDITOR environment variable is undefined, the debugger invokes the vi editor.

The following example invokes the Emacs* editor on the file chars.c:

(idb) sh printenv EDITOR
notepad

(idb) file

chars.c

(idb) edit

The following example invokes the nedit editor on the file ~/foo/bar. f:

(idb) sh printenv EDITOR
nedit

66

Intel(R) Debugger (IDB) Manual

(idb) edit ~/foo/bar.f
Context for Executing Commands
This section describes context for executing commands and discusses the following topics:

Loading an executable file

Creating a new process

Attaching the Debugger to an existing process
Multiple processes

Multiple call frames, threads, and sources

Loading an Executable File

Specifying an executable file on the command line or executing the 1o0ad (dbx) or £ile (gdb)
command identifies the current program.

f)Note:

In the background, the debugger immediately creates a process executing the program,
stalls it, and uses it to answer questions about which dynamic libraries are mapped, and so
on. This process never continues, and is killed when:

The debugger exits
You unload this executable file

Creating a New Process

Using the run command causes the debugger to create a new process running the loaded
program.

Attaching the Debugger to an Existing Process

Specifying pid <process ids> on the command line or executing the attach command causes
the debugger to take control of the process indicated.

Multiple Processes

The debugger supports concurrently debugging multiple processes at the same time, but at any
given time is only operating on a single process, known as the current process. The debugger
variable scurprocess contains the process id for this process. Naming and switching the
debugger between processes is described in Multiprocess Debugging.

67

Intel(R) Debugger (IDB) Manual

Multiple Call Frames, Threads, and Sources

Processes contain one or more threads of execution. The threads execute functions. Functions
are sequences of instructions that are generated by compilers from source lines within source
files.

As you enter the debugger commands to manipulate your process, it would be very tedious to
have to repeatedly specify which thread, source file, and so on, to which you wish the command
to be applied. To prevent this, each time the debugger stops the process, it re-establishes a
static context and a dynamic context for your commands. The components of the static context
are independent of this run of your program; the components of the dynamic context are
dependent on this run.

The components of these contexts can be displayed as debugger variables or by other
commands:

e The static context consists of the following:
o Current program - listobj (dbx) or info file / info sharedlibrary (gdb)
o Currentfile - print $curfile
o Currentline - print S$curline
e The dynamic context consists of the following:
Current call frame - where
Current process - print $curprocess
Current thread - print $curthread
The thread executing the event that caused the debugger to gain control of the
process - thread

O O oo

The debugger keeps the components of the static and dynamic contexts consistent as the
contexts change. The current file and line are determined by where the debugger stops the
process, but the dynamic context can be changed directly, using the up/down, func (dbx) or
frame (gdb), process (dbx), and thread commands. The program can be unloaded using the
unload (dbx) or £ile (gdb) command.

Running the Program Under Debugger Control

The program that is to be debugged can be run directly from the debugger, or it can be started
separately from the debugger and then "attached to" by the debugger.

In some situations the program requires more context, or a process may already have been
created. It could be part of a pipe, perhaps it is a long-running process, or perhaps it is created
from a shell script or makefile . Hence, the following situations are possible:

e Running your program as a child process of the debugger process.
e Using the debugger's ability to attach to any process to which it has access.

Running the Program in the Debugger

If your program can be run using a simple command line, you can load it when you start the
debugger. For example:

68

DBX Mode

% idb a.out

or

idb
idb) load a.out

— o\°

GDB Mode

% idb -gdb a.out
or

idb -gdb
idb) file a.out

Attaching to a Running Program

Intel(R) Debugger (IDB) Manual

If your program is already running, you can "attach to" the program to debug it. To attach to a
running program you must know its process identifier or PID. In the examples that follow, the

PID of the program is 8492.

Examples:

DBX Mode

% idb -pid 8492 a.out

idb
idb) attach 8492 a.out

GDB Mode
% idb -gdb -pid 8492 a.out
or

% idb -gdb (idb) file a.out

(idb)

attach 8492

69

Intel(R) Debugger (IDB) Manual

Once you attach to a process, the process continues execution until it raises a signal that the
debugger intercepts (for example, secv). If you have set the $stoponattach preference
variable, it stops immediately.

One method you can use to attach to a process at a predictable location is to add a looping
function to your program that keeps executing until the debugger takes control and you interrupt
it (for example, with Ctrl+C). For example:

1. Add code such as the following to your application:

volatile int endStallForDebugger=0;
void stallForDebugger ()

while (!endStallForDebugger) ;

}

int main()

stallForDebugger () ;

2. Run this version of your program.
3. Attach the debugger to the running process as described above.
4. Stop the program with Ctrl+C or by use of $stoponattach.

5. Use the debugger to assign to the stallForDebugger variable, and continue the execution of
the process, so that it exits from the loop:

(idb) assign endStallForDebugger = 1
(idb) # set any needed breakpoints, and so on
(idb) cont

The 1load, unload, and file Commands

Using the 1oad (dbx) and £ile (gdb) commands, you specify which executable file you intend to
execute under control of the debugger. (This is done automatically when you give the debugger
a file name on the command line.) These commands read the symbolic information for an
executable file and the shared libraries it uses (if available). Objects compiled without debug
information will not have symbols to load. The 1oad (dbx) command can optionally load a core
file.

70

Intel(R) Debugger (IDB) Manual

DBX Mode

load command
load filename [filename]

The second file name is used to specify a core file. If you specify a core file, the debugger acts
as though it is attached to the process at the point just before it died, except that you cannot
execute commands that require a runnable process, such as commands that try to continue the
process or evaluate function calls.

Examples:
$ idb /home/user/examples/x_ list
or

(idb) listobj
Program is not active
(idb) load /home/user/examples/x list

Reading symbolic information from /home/user/examples/x list...done
(idb) listobj
section Start Addr End Addr

/home /user/examples/x list

.text 0x8048000 0x8056e3f

.data 0x8057000 0x805deeb

.bss 0x805deec 0x805dfb3
/lib/1ibdl-2.3.2.s80

.text 0xb7386000 0xb7387dc3

.data 0xb7388dc4 0xb7388f53

.bss 0xb7388f54 0xb7388f73
/1lib/tls/libc-2.3.2.s0

.text 0xb7389000 0xb74b94f5

.data 0xb74ba500 0xb74bcfdb

.bss 0xb74bcfdc 0xb74bfa8b
/nfs/cmplr/icc-9.0.031/1ib/libunwind.so.5

.text 0xb74c0000 0xb74c433f

.data 0xb74c5340 0xb74c5abb

.bss 0xb74c5abc 0xb74c5clb
/nfs/cmplr/icc-9.0.031/1ib/libcxa.so.5

.text 0xb74c6000 0xb74e62b3

.data 0xb74e7000 0xb74eed37

.bss 0xb74eed38 0xb74eeeaf
/nfs/cmplr/icc-9.0.031/1lib/libcprts.so.5

.text 0xb74ef000 0xb758d933

.data 0xb758e000 0xb75b422f

.bss 0xb75b4230 0xb75b4c27
/lib/tls/1libm-2.3.2.s0

.text 0xb75b5000 0xb75d5dbf

.data 0xb75d6dc0 0xb75d6£f43

.bss 0xb75d6f44 0xb75d6f8f
/lib/1d-2.3.2.s0

.text 0xb75eb000 O0xb75fffcf

.data 0xb7600000 0xb7600533

.bss 0xb7600534 0xb7600753

71

Intel(R) Debugger (IDB) Manual

GDB Mode

file command

file [filename]

If £ilename is specified, the debugger loads the specified executable. Without an argument, the
debugger unloads the current executable file.

Example:
% idb -gdb /usr/examples/x_list
or:

(idb) info files

(idb) file /home/user/examples/x list

Reading symbols from /home/user/examples/x list...done.
(idb) info files

Symbols from "/home/user/examples/x list".

Unix child process:

Using the running image of child process 19438.

While running this, IDB does not access memory from...
Local exec file:

' /home/user/examples/x list', file type <unknowns>
0x8048000 - 0x8056e40 is .text

0x8057000 - 0x805deec is .data

0x805deec - 0x805dfb4 is .bss

Loading a process both creates the debugger's knowledge of it and makes it the current
process that the debugger is controlling.

The opposite of loading an executable file is unloading an executable file, when the debugger
removes all related symbol table information that the debugger associated with the process
being debugged.

DBX Mode

unload command
unload [pid ,...]
| unload [filename]
pid
integer constant
Process for unloading can be specified by either a process id or an executable file name.

(idb) 1listobj
section Start Addr End Addr

72

Intel(R) Debugger (IDB) Manual

/home /user/examples/x list

.text 0x8048000 0x8056e3f
.data 0x8057000 0x805deeb
.bss 0x805deec 0x805dfb3
/1lib/1ibdl-2.3.2.s0
.text 0xb7386000 0xb7387dc3
.data 0xb7388dc4 0xb7388f53
.bss 0xb7388f54 0xb7388f73
/lib/tls/1libc-2.3.2.s0
.text 0xb7389000 0xb74b94f5
.data 0xb74ba500 0xb74bcfdb
.bss 0xb74bcfdc 0xb74bfa8b
/nfs/cmplr/icc-9.0.031/1ib/libunwind.so.5
.text 0xb74c0000 0xb74c433f
.data 0xb74c5340 0xb74c5abb
.bss 0xb74c5abc 0xb74c5clb
/nfs/cmplr/icc-9.0.031/1ib/libcxa.so.5
.text 0xb74c6000 0xb74e62b3
.data 0xb74e7000 0xb74eed37
.bss 0xb74eed38 Oxb74eeeaf
/nfs/cmplr/icc-9.0.031/1ib/libcprts.so.5
.text 0xb74ef000 0xb758d933
.data 0xb758e000 0xb75b422f
.bss 0xb75b4230 0xb75b4c27
/lib/tls/1libm-2.3.2.s0
.text 0xb75b5000 0xb75d5dbf
.data 0xb75d6dc0 0xb75d6f43
.bss 0xb75d6f44 0xb75d6f8f
/1lib/1d-2.3.2.s0
.text 0xb75eb000 O0xb75fffct
.data 0xb7600000 0xb7600533
.bss 0xb7600534 0xb7600753

(idb) unload
(idb) listobj
Program is not active

GDB Mode

Use the £ile command without an argument to unload an executable file.

(idb) info files

Symbols from "/home/user/examples/x list".

Unix child process:

Using the running image of child process 19436.
While running this, IDB does not access memory from...
Local exec file:

' /home/user/examples/x list', file type <unknown>
0x8048000 - 0x8056e40 is .text

0x8057000 - 0x805deec is .data

0x805deec - 0x805dfb4 is .bss

(idb) file

No executable file now.

No symbol file now.

(idb) info files

The run and rerun Commands

73

Intel(R) Debugger (IDB) Manual

After you have loaded a program, you can create a process executing this program using either
of the following forms of the run command:

DBX Mode

run_command

: run [argument_ string][i0_redirection ...]
| rerun [argument string] [io redirection ...]

If the rerun command is specified without arguments, the arguments and io_redirection
arguments of the most recent run command entered with arguments are used. If there was no
previous run command, the rerun command defaults to run.

GDB Mode

run command

: run [argument string][io_redirection ...]
| = [argument string] [io redirection ...]
arg commands
set_args command
| show args command
set_args command
set args [argument string] [io redirection ...]
show_args command

show args

If the run (or r) command does not specify any arguments, default arguments are used. Default
arguments are specified by the previous run command with arguments or by set args
command. To view default arguments, use the show args command.

f)Note:

The set args commands does not affect process currently running. New arguments will
affect only the next run.

If the last modification time or size of the binary file or any of the shared objects used by the
binary file has changed since the last run or rerun (dbx) command was issued, the debugger
automatically rereads the symbol table information. If this happens, the old breakpoint settings
may no longer be valid after the new symbol table information is read.

74

Intel(R) Debugger (IDB) Manual

The argument _string provides both the argc and argv for the created process in the same
way a shell does.

The debugger breaks up the argument string into words, and supports several shell features,
including tilde (~) and environment variable expansion, wildcard substitution, single quote ('),
double quote (), and single character quote (\).

The io redirection argument allows you to change stdin, stdout, and stderr, which are
otherwise inherited from the debugger process:

io redirection
< filename
| > filename
| 1> filename
| 2> filename

| >& filename

The various forms have the same effect as in the csh(1) shell.

f)Note:

Although the grammar currently allows more than the following forms of redirection, you
should only use the following forms because the grammar may change in a future release
of the debugger.

> filename Redirect stdout
1> filename Redirect stdout
2> filename Redirect stderr
>& filename Redirect stdout and stderr

1> filename 2> filename Redirect stdout and stderr to different files

Examples:

DBX Mode

(idb) stop at 182

[#1: stop at "src/x list.cxx":182]

(idb) run -s > prog.output

[1] stopped at [int main(void) :182 0x08052e0f]
182 List<Node> nodelist;

GDB Mode

(idb) break main
Breakpoint 1 at 0x8052e0f: file src/x list.cxx, line 182.
(idb) show args

75

Intel(R) Debugger (IDB) Manual

Argument list to give program being debugged when it is started is "".
(idb) run
Starting program: /home/user/examples/x list

Breakpoint 1, main () at src/x list.cxx:182
182 List<Node> nodelList;

(idb) continue

Continuing.

The list is:

Node 1 type is integer, value is 1

Node 2 type is compound, value is 12.345
parent type is integer, value is 2

Node 3 type is compound, value is 3.1415
parent type is integer, value is 7

Node 4 type is integer, value is 3

Node 5 type is integer, value is 4

Node 6 type is compound, value is 10.123
parent type is integer, value is 5

Destroying nodes. ..

All nodes destroyed

Program exited normally.

(idb) set args -s > prog.output

(idb) show args

Argument list to give program being debugged when it is started is "-s >
prog.output".

(idb) run

Starting program: /home/user/examples/x list

Breakpoint 1, main () at src/x list.cxx:182

182 List<Node> nodeList;

The kill Command

You can Kill the current process:
kill command
kill

Killing a process leaves the debugger running. Any breakpoints previously set are retained. You
can execute the program again later using the rerun (dbx) or the run (gdb) commands without
loading it again. For example:

DBX Mode

(idb) show process
Current Process: localhost:19307 (/home/user/examples/x list) paused.
(idb) kill
Process has exited
(idb) rerun
[1] stopped at [int main(void) :182 0x08052e0f]
182 List<Node> nodelList;

GDB Mode

(idb) info program

Using the running image of child process 19440.
Program stopped at 0x8052e0f.

It stopped at breakpoint 1.

(idb) kill

76

Intel(R) Debugger (IDB) Manual

Program exited normally.

(idb) run

Starting program: /home/user/examples/x list
Breakpoint 1, main () at src/x list.cxx:182
182 List<Node> nodeList;

The attach and the detach Commands

If a process already exists, you can have the debugger attach to it:

DBX Mode

attach command

: attach pid [filename]

GDB Mode

attach command

: attach pid

f)Note:

The attach command requires the name of executable to be specified before attaching to
the process. Use the £ile command or shell command line to specify the filename.

The process is specified by its pid:
pid
: expression

For example:

DBX Mode

(idb) attach 12345 a.out

GDB Mode

(idb) file a.out
Reading symbols from a.out...done.
(idb) attach 12345

Note that you must specify the file name. The file name should be the executable file that is
executing or a duplicate copy of it. You may omit the executable file name only if the debugger
already has the file loaded. It means that if a file name is not specified, the current executable is

77

Intel(R) Debugger (IDB) Manual

used. If the executable contains symbolic debug information it will be read by the debugger
during the attach.

Attaching to a process both creates the debugger's knowledge of it and makes it the current
process that the debugger is controlling. The process continues execution until it raises a
signal that the debugger intercepts. Usually you do this by pressing Ctrl+C or by using the shell
command kill in another window. Any other mechanism for raising a signal within the process
will also do. You can set the debugger variable $stoponattach to 1 to direct the debugger to
immediately stop any process that it attaches to.

(idb) “c
Interrupt (for process)
Stopping process localhost:16077 (loop.out) .
Thread received signal INT
stopped at [int main(void) :3 0x120001100]
3 while (1) ;

The opposite of attaching to a process is detaching from a process. When you detach the
debugger from a process, all breakpoints are removed and the process continues to run, but the
debugger can no longer identify or control it:

DBX Mode

detach command
: detach pid , ...
For example:

(idb) detach 12345, 789

GDB Mode

detach command

: detach

The detach command detaches the debugger from a current process and, therefore, does not
require pid.

Controlling the Process Environment

You can set and unset environment variables for processes created in the future to set up an
environment different from the environment of the debugger and from the shell from which the
debugger was invoked. When set, the environment variables apply to all new processes you
debug.

78

Intel(R) Debugger (IDB) Manual

f)Note:

The environment commands have no effect on the environment of any currently running
process. The environment commands do not change or show the environment variables of
the debugger or of the current process. They only affect the environment variables that will
be used when a new process is created.
environment variable command
show environment variable command

| set environment variable command

| unset environment variable command

To print either all the environment variables that are currently set or a specific one, use a
show _environment variable command.

DBX Mode

show environment variable command
printenv [environment variable name]
| export

| setenv

LINote:
The export and setenv commands without any arguments are equivalent.

GDB Mode

show environment variable command
show environment [environment variable name]
|ﬂwem [environment variable name]

The show env is a synonym for the show environment command.

If you do not specify the name of the environment variable to show, the debugger will print all
the environment variables.

To add or change an environment variable, use a set environment variable command. If the
environment variable value iS not specified, the environment variable value is set to " .

79

Intel(R) Debugger (IDB) Manual

DBX Mode
set environment variable command
export environment variable name =
environment variable value
| setenv environment variable name

environment variable value

GDB Mode

set _environment variable command
set environment environment variable name [[
environment variable value]
| set env environment variable name [[

environment variable value]

environment variable value

string

To remove an environment variable, use the following commands:

DBX Mode
unset environment variable command
unsetenv environment variable name

| unsetenv *

If an asterisk (*) is specified, all environment variables are removed.

GDB Mode

unset environment variable command
unset environment environment variable name

unset env environment variable name

80

Intel(R) Debugger (IDB) Manual

f)Note:

There is no command to simply return to the initial state the environment variables had
when the debugger started. You must use set_environment variable commands and
unset environment variable commands appropriately.

For example:

DBX Mode

(idb) printenv TOOLDIRECTORY

Error: Environment variable 'TOOLDIRECTORY' was not found in the environment.
(idb) setenv TOOLDIRECTORY /home/user/examples/tools

(idb) printenv TOOLDIRECTORY

TOOLDIRECTORY=/home/user/examples/tools

GDB Mode

(idb) show environment TOOLDIRECTORY

Environment variable "TOOLDIRECTORY" not defined.

(idb) set environment TOOLDIRECTORY /home/user/examples/tools
(idb) show environment TOOLDIRECTORY
TOOLDIRECTORY=/home/user/examples/tools

(idb) unset environment TOOLDIRECTORY

(idb) show environment TOOLDIRECTORY

Environment variable "TOOLDIRECTORY" not defined.

Multiprocess Debugging

The debugger can find and control more than one process at a time. The debugger can find and
control a process for one of the following reasons:

e It created the process.
e It attached to the process.

A process that it was controlling executed a fork, and $catchforks was set.

At any one time, you can examine or execute only one of the processes that the debugger
controls. The rest are stalled. You must explicitly switch the debugger to the process you want
to work with, stalling the one it was controlling:

multiprocess command

show process command

| switch process command

81

Intel(R) Debugger (IDB) Manual

You can show the processes the debugger controls:

show process command

show process [all]
| process
all

all

| *
For example:

(idb) show process
>localhost:20986 (/home/user/examples/x list) loaded.

You can explicitly command the debugger to control a different process:
switch process command
process pid

| process filename

The process you are switching away from remains stalled until either the debugger exits or until
you switch to it and continue it.

The following example creates two processes and switches from one to the other:

(idb) process

There is no current process.

You may start one by using the “load' or “attach' commands.

(idb) load x list

Reading symbolic information from

/home /user/examples/x.x processes/x list...done

(idb) process

>localhost:20988 (/home/user/examples/x.x processes/x list) loaded.
(idb) set $0ld process = S$curprocess

(idb) printf "$old process=%d", $old process

Sold process=20988

(idb) load x segv

Reading symbolic information from

/home/user/examples/x.x processes/x segv...done

(idb) process

localhost:20988 (/home/user/examples/x.x processes/x list) loaded.
>localhost:20990 (/home/user/examples/x.x processes/x segv) loaded.
(idb) process 20988

(idb) process

>localhost:20988 (/home/user/examples/x.x processes/x list) loaded.
localhost:20990 (/home/user/examples/x.x processes/x_segv) loaded.

82

Intel(R) Debugger (IDB) Manual

Both the 1oad (dbx) command and the attach (dbx) command switch the debugger to the
process on which they operate.

Processes That Use fork()

The debugger has the following predefined variables that you can set for debugging a program
that forks:

e Scatchforks - When set to a hon-zero value, this variable instructs the debugger to
stop the child process on exit out of the fork () or vfork () calls. The parent process
continues to run. The default is O (zero).

e S$stopparentonfork - When set to a non-zero value, this variable instructs the
debugger to stop the parent process on exiting out of the fork () or vfork () calls after it
forks a child process. The child process continues to run if scatchforks is 0; otherwise,
it does not. The default is 0 (zero).

e Scatchforkinfork - When set to a non-zero value, this variable instructs the debugger
to stay in the fork routine after the fork and notifies you as soon as the forked process is
created; otherwise, you are notified when the call finishes. You can debug forking
processes before any "atfork" handlers are run by setting scatchforkinfork. Because
the target stops inside the system call, you will need to issue up commands to get to
user-written code. The default is 0 (zero).

When a fork occurs, the debugger sets the debugger variables $childprocess and
$parentprocess t0 the child and parent process IDs, respectively.

In the following example, the debugger notifies you that the child process has stopped. The
parent process continues to run.

(1idb) set $catchforks = 1
(idb) run
Process 29027 forked. The child process is 29023.
Process 29023 stopped on fork.
stopped at [int main(void) :6 0x120001178]
6 int pid = fork() ;
fork.c: I am the parent.
Process has exited with status 0
(idb) show process
>localhost:29028 (/home/user/examples/fork) loaded.
localhost:29023 (/home/user/examples/fork) paused.

In the preceding example, note the following:

e The debugger indicates that the child process has stopped, and shows the line number
at which it is stopped.

e The last two lines show that the child process has stopped and that the parent process
has completed execution.

Continuing the previous example, the following shows how to switch the debugger to the child
process. Listing the source code shows the source for the child process.

83

Intel(R) Debugger (IDB) Manual

(idb) process $childprocess
(idb) show process
localhost:29028 (/home/user/examples/fork) loaded.
>localhost:29023 (/home/user/examples/fork) paused.
(idb) 1list

7

8 if (pid == 0)

9

10 printf ("fork.c: I am the child.\n");

11

12 else

13

14 printf ("fork.c: I am the parent.\n");

15

16 }

In the preceding example, note the following:

e The first line switches the current process context to the child process.
e The right angle bracket indicates the current process.
e The 1ist command lists the source code for the current process.

f)Note:

If you catch the child but not the parent, and the parent code tries to execute a wait on the
child, the target will get stuck if you don't let the child run to completion. This happens
because the parent will be running but making no progress, and the child is stopped by the
debugger. For example:

(idb) set $catchforks = 1
(idb) set $stopparentonfork = 0

(idb) 1list

10 int new pid = 0;

11

12 if (pid == 0) {

13 printf ("fork.c: I am the child.\n");

14 fflush(stdout) ;

15

16 } else {

17 printf("fork.c: I am the parent, about to wait.\n");

18 fflush(stdout) ;

19

20 new pid = wait(&status);

21

22 printf ("fork.c: I am the parent, and my wait is finished\n"
) g

23

24 if (new pid != pid)

25 printf ("\tthere was some error\n");

26 else {

27 if (WIFEXITED (status))

28 printf ("\tthe child terminated normally\n") ;

29

30 else if (WIFSIGNALED (status))

(idb) sh cat ./x.c fork hang.txt
If we 'cont' now, the process will fork; the child will be
caught and the parent will run to the 'wait' call and wait

84

Intel(R) Debugger (IDB) Manual

for the child to terminate.
At that time, the child will be under debugger control,
but the current process will be the parent, which will be
running but making no progress. Only a Ctrl/C will allow
further progress.
The example program has set up another process to simulate
a Ctrl/C by the user. It will send SIGINT to the parent.
(idb) cont
Process 580893 forked. The child process is 580851.
Process 580851 stopped on fork.
stopped at [void test (void) :9 0x120001318]
9 int pid = fork();
fork.c: I am the parent, about to wait.

User is waiting here

Sending SIGINT to parent process

Thread received signal INT

stopped at [<opaque> wait4 (...) 0x3££800d40918]

Information: An <opaque> type was presented during execution of the previous
command. For complete type information on this symbol, recompilation of the
program will be necessary. Consult the compiler man pages for details on
producing full symbol table information using the '-g' (and '-gall' for cxx)

flags.

(idb) where

>0 0x3££800d0918 in wait4 (...) in /usr/shlib/libc.so

#1 0x3ff800d668c in wait(...) in /usr/shlib/libc.so

#2 0x120001398 in test () "c fork hang.c":20

#3 0x120001528 in main() "c fork hang.c":71

#4 0x1200012a8 in start(...) in /home/user/examples/c fork hang

(idb) show process
>localhost:580893 (/home/user/examples/c fork hang) paused.
_localhost:580851 (/home/user/examples/c_fork hang) paused.

Processes That Use exec()

Set scatchexecs to 1 to instruct the debugger to stop the process and notify you when an exec
occurs. The process stops before executing any user program code or static initializations. You
can debug the newly executed process. The debugger keeps a history of the progression of the
executed files.

In the following scenario, you set the predefined variables $catchforks and $catchexecs to 1.
The debugger will notify you when an execution occurs. Because scatchforks is set, you will
also be tracking the child process and, therefore, you will be notified of any exec in the child
process.

The following example shows an exec occurring on the current context and the child process
stopped on the run-time loader entry point:

1
1

(idb) set $catchforks
(idb) set $catchexecs
(idb) run
Process 14839 forked. The child process is 14835.
Process 14835 stopped on fork.
stopped at [int main(void) :8 0x1200011f8]

8 if ((pid = fork()) == 0)

85

Intel(R) Debugger (IDB) Manual

x exec.c: I am the parent.
Process has exited with status 0
(idb) show process
>localhost:14918 (x exec) loaded.
localhost:14835 (x exec) paused.
(idb) process $childprocess

(idb) 1list 6:13

6 int pid;

7
> 8 if ((pid = fork()) == 0)
9
10 printf ("About to exec \n");
11 fflush(stdout); /* Make sure the output gets out! */
12 execlp ("announcer", "announcer", NULL) ;
13 printf ("After exec \n");
14 }
15 else
16 {
17 printf ("x exec.c: I am the parent.\n");
18
(idb) cont
About to exec
The process 14835 has execed the image "./announcer".
Reading symbolic information ...done
stopped at [0x3ff8001bf48]
5 printf ("announcer.c: I am here!! \n");

Note the following:

e Use process $childprocess to setthe current process context to the child process.

e Listing the source code, you can see the process is almost ready to execute.

e The debugger notifies you when the exec occurs.

e The child process is stopped on the run-time loader entry point. The source display
shows the code in the main routine.

Core File Debugging

When the operating system encounters an unrecoverable error, for example, a segmentation
violation (SEGV), the system creates a file named core and places it in the current directory.
The core file is not an executable file; it is a snapshot of the state of your process at the time the
error occurred. It allows you to analyze the process at the point it crashed. For more information
on core file debugging, see Debugging Core Files

Locating the Site of a Problem. Overview

To determine why a problem is happening, you usually want to execute your program up to or
just before the point at which you observe the first evidence of the problem. Then you can
examine the internal state of your program and try to identify something that explains the visible
problem. Possibly you will see right away how the problem occurs, in which case you are
finished debugging. You then correct your program, recompile, relink, and confirm that the
correction works as intended.

86

Intel(R) Debugger (IDB) Manual

Often, you will see something about the program state that is wrong but you will not see how it
got that way. In that case, you need to make a guess at where the mistake might have occurred.
Then, repeat this whole process, trying to stop at or just before the possible trouble point.

For simple problems, it may be easy to describe the conditions under which you want to stop
the program; for example, "the first time traverse is called" or "when division by zero
occurs”. Other situations may require either more complex descriptions or repeated trial-and-
error attempts to discover the critical information needed to solve your problem.
Breakpoints provide the means by which you specify to the debugger an event or condition
under which you want to intervene in the execution of your program and what actions you want
the debugger to take when that event is detected.
You can define breakpoints based on:
e Reaching a certain place in your program (such as entering a certain function or
reaching code for a particular source line number)
e Accessing the contents of a variable or other memory when it is either read or written
e Raising a specified signal
You can also enable, disable, or delete breakpoints.
Breakpoint commands include the following:
breakpoint command
: breakpoint definition command
| simple stop command
| signal command

| obsolete breakpoint definition command

| breakpoint table command
In this section, you will find information on
breakpoints
detectors
breakpoints and C++
special breakpoint commands
obsolete breakpoint commands

breakpoint tables

87

Intel(R) Debugger (IDB) Manual

Breakpoints
This section discusses the following topics:
Breakpoint Definitions
Disposition
The quiet Specifier
Types of Detectors
Thread Filter
Logical Filter
Breakpoint Actions
When Multiple Breakpoints Trigger at Once
Recursive Breakpoints
Breakpoints and C++
Special Breakpoint Commands
Breakpoint Interactions with exec(), fork(), dlopen() and diclose() System Calls

Obsolete Breakpoint Commands (DBX Mode only)
Breakpoint Definitions
The following is a particularly common breakpoint:

DBX Mode

(idb) stop in main
[#1: stop in int main(void)]

GDB Mode

(idb) break main
Breakpoint 1 at 0x8052e0f: file src/x_list.cxx, line 182.

This command tells the debugger that when execution enters the function main, you want the
debugger to suspend execution and return control to you.

88

Intel(R) Debugger (IDB) Manual

The debugger responds to a breakpoint command by displaying how it recorded the request
internally. The debugger assigns a number to the breakpoint (in this case, it is 1), which it uses
later to refer to that breakpoint. The debugger does not just repeat the command as you entered
it; it provides a more complete description of the function main to help you confirm that it has
correctly identified the function you meant.

Later, after you cause the program to execute, if that event occurs, the debugger reports the
event and then prompts you for what to do next. For example:

DBX Mode

(idb) run

[1] stopped at [int main(void) :182 0x08052e0f]
182 List<Node> nodeList;

GDB Mode

(idb) run

Starting program: /home/user/examples/x list

Breakpoint 1, main () at src/x list.cxx:182

182 List<Node> nodelist;

Both the event part and the action part of a breakpoint definition command consist of several
subparts:

breakpoint definition command
: disposition
[quiet]
detector
[thread filter]
[logical filter]
[breakpoint actions]

where the detector, thread filter (if specified), and logical filter (if specified)
collectively specify the event part, and the disposition, quiet (if specified) and
breakpoint_actions (if specified) collectively specify the action part.

f)Note:

Additional obsolete forms of breakpoint definition are retained only for backward
compatibility with earlier versions of the debugger. These forms are explained later. The
obsolete forms may be eliminated in a future release.

There are three distinct points in time at which a breakpoint definition has an effect:

89

Intel(R) Debugger (IDB) Manual

1. When the command is entered

The command is parsed, names and expressions that occur in any of the event parts are
evaluated, and the breakpoint actions are parsed and checked for correctness (but not
evaluated).

2. When the debugger initiates program execution

For each breakpoint that is not disabled, appropriate modifications are made to the
program to enable detection of the specified event.

3. When a detector triggers during program execution

The thread filter specification (if present) and logical filter (if present) are evaluated to
determine whether the breakpoint as a whole has triggered. If not, then execution is
resumed (silently). If so, the breakpoint actions are performed, after which execution
stops or resumes according to the specified disposition.

Disposition
disposition
: stop
| when

The stop command specifies that when the event specified by the breakpoint occurs and all
processing for that breakpoint has been completed, the debugger should prompt for further
commands.

The when command specifies that when the event specified by the breakpoint occurs and all
processing for that breakpoint has been completed, the debugger may resume execution of the
program. See the section When Multiple Breakpoints Trigger at Once for an explanation of how
the debugger determines when to resume execution.

The quiet Specifier

By default, when an event is detected and the debugger determines that the breakpoint actions
should be performed, the debugger prints a line that identifies the breakpoint, for example:

(idb) when in main { stop }

[#1: when in int main(void) { stop }]

(idb) run

[1] when [int main(void) :182 0x08052e0f]

[1] stopped at [int main(void) :182 0x08052e0f]
182 List<Node> nodeList;

The optional quiet specifier tells the debugger to omit this information.

90

Intel(R) Debugger (IDB) Manual

(idb) when quiet in main { stop }
[#11: when quiet in int main(void) { stop }]

(idb) run

(idb) 1list Scurline:1

> 182 List<Node> nodelist;
Detectors

The debugger uses several kinds of detectors, each corresponding to a particular kind of event:

DBX Mode

detector
: place detector
| watch detector
| signal detector
| unaligned detector
A place detector specifies a place or location in your program. It can refer to the beginning of a

function, a particular line in one of your source files, a specific value of the PC (program
counter), or certain sets of these.

A watch detector specifies a variable or other memory locations that should be monitored to
detect certain kinds of access (read, write, and so on).

A signal detector specifies a set of signals to be monitored.
An unaligned access detector specifies any kind of memory access using an unaligned access.

This section describes each type of detector.

Place Detectors

You can use place detectors to determine when execution reaches a particular place or location
in your program:

DBX Mode

place detector
in function name
| in all function name

| pc address expression

91

Intel(R) Debugger (IDB) Manual

| at line specifier

| every proc entry

| every procedure entry
| every instruction

| expression

The in function name detector specifies the event where execution reaches the entry of the
named function. For example:

If the function name is ambiguous (more than one function can match the name in some
languages, including C++), the debugger prompts you with a list of alternatives from which to
choose.

(idb) stop in foo
Select from

1 int C::foo(double¥*)
2 void C::foo(float)
3 void C::foo(int)

4 void C::foo(void)

5 None of the above

[#4: stop in void C::foo(float)]

If you choose the last option ("None of the above™), then no function is selected and no
breakpoint is defined.

The in all function name detector is the same as in function name except that it
specifies all of the functions that match the given name, whether one or more:

(idb) stop in all foo
[#3: stop in all fool

The pc address expression detector specifies the event where execution reaches the given
machine address:

(idb) stop pc $pc
[#7: stop PC == 0x80534b4]

The at 1ine specifier detector specifies the event where code associated with a particular
line of the source is reached:

92

Intel(R) Debugger (IDB) Manual

(idb) stop at 190
[#8: stop at "src/x list.cxx":190]

If no code is associated with the given line number, the debugger finds and substitutes the
closest higher line number that has associated code.

The every procedure entry detector specifies that a breakpoint should be established for
every function entry point in the program.

(idb) stop every procedure entry
[#9: stop every procedure entryl

f)Note:

This command can be very time consuming because it searches your entire program -
including all shared libraries that it references - and establishes breakpoints for every entry
point in every executable image. This can also considerably slow execution of your
program as it runs.

A disadvantage of this command is that it establishes breakpoints for hundreds or even
thousands of entry points about which you have little or no information. For example, if you use
stop every proc entry immediately after loading a program and then run it, the debugger will
stop or trace over 100 entry points before reaching your main entry point. About the only thing
that you can do if execution stops at most such unknown places is continue until some function
relevant to your debugging is reached.

The every instruction detector specifies a breakpoint for every instruction in your entire

program:

(idb) stop every instruction
[#10: stop every instruction]

When used with the stop disposition, a subsequent continue behaves essentially the same as
a step by instruction command (see stepi).

When used with the when disposition, subsequent next and step commands allow you to trace
all of the instructions that are executed as a result of those stepping commands. Beware that
even when next is used to step over a called routine, the trace output includes all of the
instructions that are executed within the called routine (and any routines that it calls).

f)Note:

This command will slow execution of your program considerably.

93

Intel(R) Debugger (IDB) Manual

The detector expression (thatis, an expression not preceded by one of the keywords in, at,
or pc) specifies either a function name or line number depending on how the expression is
parsed and evaluated. An expression that evaluates to the name of a function is handled just
like the equivalent command that uses in in the detector; otherwise, it is handled like the
equivalent command that uses at in the detector.

Watch Detectors

You can use watch detectors to determine when a variable or other memory location is read or
written and/or changed. Breakpoints with watch detectors are also known as watchpoints.

watch detector
basic watch detector watch detector modifiers
basic watch detector
: variable expression

| memory start address expression
| memory start address expression, end_address_expression

| memory start address expression: byte count expression

watch detector modifiers
[access modifier] [within modifier]

access_modifier

: write

| read

| changed

| any
within modifier

: within function name

You can specify a variable whose memory is to be watched, or specify the memory directly. The
accesses that are considered can be limited to those that write (the default), read, write and
actually change the value, or can include all accesses.

If you specify a variable, the memory to be watched includes all of the memory for that variable,
as determined by the variable's type. The following example watches for write access to variable
_nextNode, Which is allocated in the 8 bytes at the address shown in the last line of the
example:

94

Intel(R) Debugger (IDB) Manual

(idb) whatis nextNode

struct Node* Node:: nextNode

(idb) print "sizeof(nextNode) =", sizeof ((nextNode))
sizeof (nextNode) = 4

(idb) stop variable nextNode write

[#3: stop variable nextNode write]

The specified variable is watched. If "p" is a pointer, watch variable p will watch the content
of the pointer, not the memory pointed to by "p". Use watch memory *p to watch the memory

pointed to by "p".

If you specify memory directly in terms of its address, the memory to be watched is defined as
follows:

By default (no last address or size given), then 8 bytes beginning at the given start
address:

(idb) when memory & nextNode : 8 any
[#4: when memory & nextNode : 8 anyl

If an end address is given, then all bytes of memory from the start address to and
including the end address:

(idb) stop memory & nextNode, ((long)& nextNode) + 3 read
[#5: stop memory & nextNode, ((long)& nextNode) + 3 read]

This watches the 4 bytes specified on the command line.

If you specify a byte count, then the given number of bytes starting at the given start
address:

(idb) stop memory & nextNode : 2 changed
[#6: stop memory & nextNode : 2 changed]

This watches the 2 bytes specified on the command line for a change in contents.

If you specify the within modifier, then only those accesses that occur within the given function
(but not any function it calls) are watched. For example:

(idb) whatis t
int t
(idb) stop variable t write within foo
[#2: stop variable t write within void C::foo(void)]
(idb) cont

[2] Address 0x0804d5c8 was accessed at:
void C::foo(void): src/x overload.cxx

[line 22, 0x08048721] foo+0x3: movl $S0x0, 0x804d5c8
0x0804d5c8: 0ld wvalue 0x0000000f
0x0804d5c8: New value 0x00000000

[2] stopped at [void C::foo(void) :22 0x0804872Db]

22 void C::foo() { t = 0; state++; return; }

95

Intel(R) Debugger (IDB) Manual

Signal Detectors

You can use signal detectors to determine when a particular signal is raised:
signal detector

signal signal id , ...

signal id
integer constant
| signal name

You can specify signals by numeric value or by their conventional operating system names,
without or without the leading "SIG":

(idb) stop signal SEGV, 8, SIGINT
[#2: stop signal SEGV, 8, SIGINT]

If the debugger catches a signal event, then a subsequent simple continue will resume
execution without raising the signal again in your process. However, a signal can be specified
as part of the continue command to send the signal to your process when it resumes.

Unaligned Access Detectors

You can use an unaligned access detector to determine when an unaligned memory access
occurs:

unaligned detector

unaligned

Unaligned accesses may be automatically handled by the operating system. By default, an
unaligned access results in an information message and then is corrected so that your program
can continue. (You or your system administrator can choose a different default. See uac(1) for
more information.) This message looks like this:

Unaligned access pid=30231 <x signals> va=0x11ffff791 pc=0x120001laf4
ra=0x120001b84 inst=0xa0220000

You can request the debugger to detect unaligned accesses:

96

Intel(R) Debugger (IDB) Manual

(idb) stop unaligned access

[#1: stop unaligned access]

(idb) run

Thread encountered Unaligned Access

[1] stopped at [int unalignedAccess (void) :27 0x120001af8]
27 return y;

Unaligned Access Detector (Linux* and Mac OS* Only)

Unaligned accesses are automatically handled and quietly corrected on Linux and Mac OS. The
debugger cannot detect these events.

Thread Filter

A thread filter determines whether a detected event should be further considered for breakpoint
processing.

thread filter

: thread thread id , ...

The thread_id expressions are evaluated at the time the breakpoint command is entered, and
each must yield an integer value.

A detected event is retained for further consideration only if the thread in which the event occurs
matches one of the given threads. If not, the detection is quietly ignored.

If the thread filter does notindicate a match, then any related logical filter is not evaluated.

Logical Filter

A logical filter determines whether a detected event should be further considered for breakpoint
processing:

logical filter
: if expression

A detected event is retained for further consideration only if the given expression evaluates to
true. If not, the detection is quietly ignored.

The expression is checked syntactically in the context of the place where the breakpoint
command is given: it must be syntactically valid according to the language rules that apply
there. However, the expression is not evaluated and names that occur in the expression need
not be visible. After the syntax check, the expression is remembered in an internal form and is
not rechecked later when it is evaluated.

97

Intel(R) Debugger (IDB) Manual

If an error occurs when the expression is evaluated, for example, because a name in the
expression is not defined, then the error is reported and the value of the expression is assumed
to be true.

An error in the expression does not change the disposition. If continuation was specified, then
that is still what occurs. For example:

(idb) when in List<Node>::append if x
[#5: when in void List<Nodes>: :append(class Node* const) if x]
(idb) cont
Symbol "x" is not defined.
[Error while evaluating breakpoint condition - taken as true]
[5] when [void List<Nodes>::append(class Node* const) :148 0x0804c55e]
Symbol "x" is not defined.
[Error while evaluating breakpoint condition - taken as true]
[5] when [void List<Nodes>::append(class Node* const) :148 0x0804c55e]
[4] stopped at [int main(void) :195 0x0805308€]
195 nodelist.append (new IntNode(3)); {static int somethingToReturnTo;
somethingToReturnTo++;

It is valid for a logical filter expression to contain a call to another routine in your program. Such
a call is evaluated in the same way as if it occurred in a call or print command. However,
execution of the called routine might result in triggering a breakpoint; this is called a recursive
breakpoint.

Breakpoint Actions

The action part of a breakpoint command specifies actions to be performed when the event part
has triggered (including passing any thread and/or logical filters):

breakpoint actions
: { action list }
action list

command
| command;

| command;. ..

Pay special attention to the following commands within the action list:

Special Commands

The following debugger commands behave differently in some fashion when used within a
breakpoint action list:

98

Intel(R) Debugger (IDB) Manual

Simple stop
A simple stop command is a stop without any detector or other parameters:

simple stop command

stop

If used within a breakpoint action list, it specifies that the disposition for the breakpoint should
be to stop after completion of action list processing, even if the breakpoint was specified with
the when disposition. If used outside an action list, it has no effect.

A simple stop command does not terminate action list processing; it only affects the disposition
that applies later. For example:

(idb) when in List<Node>::print { stop; print "*** gtopped ***u }
[#6: when in void List<Nodes::print (void) { stop; print "#*** stopped ***"

}]

(idb) cont

[6] when [void List<Nodes>::print (void) :162 0x0804c5e6]

* % % Stopped * % %

[6] stopped at [void List<Node>: :print (void) :162 0x0804c5e6]
162 Node* currentNode = firstNode;

History

The history command does not display commands that are performed as part of the
action list of a breakpoint.

Commands to Use with Caution

You must be very careful when using some commands in breakpoint action lists. The following
commands cause the debugger to resume execution of your program in the midst of action list
processing:

call

continue

goto

next

return

step

Any command that contains an expression whose evaluation involves calling a function
in your program

It is easy in such cases to lose track of just what state breakpoint processing is really in or
where you really are in your program. Such confusion may mislead or misdirect your debugging
effort. For further discussion, see the section on Recursive breakpoints.

99

Intel(R) Debugger (IDB) Manual

Commands to Avoid

You should avoid altogether some commands in breakpoint action lists. The following are
commands that directly or indirectly change the process that the debugger is controlling:

e attach and detach
(] run and rerun
e process With an argument

The debugger does not explicitly prohibit these commands, but their behavior within action lists
is implementation-defined and subject to change from release to release. In very specialized
cases, you may be able to obtain useful results by using them in action lists, but do not expect
the same behavior over the long term.

When Multiple Breakpoints Trigger at Once

It is possible for multiple breakpoints to specify the same event, or possibly overlapping events.
Thus, more that one breakpoint detector may trigger at the same time.

When more than one breakpoint detector triggers, the thread filters and logical filters of all the
breakpoints involved are processed before the action part of any breakpoint is performed.

After the set of breakpoints that trigger is determined, the action parts of each of them are
performed in an undefined order.

After all action parts are performed, execution of the program is resumed only if all of the
breakpoints so specify in their disposition. If any one of them specifies a break, the debugger
prompts you for further commands.

Recursive Breakpoints

The following commands cause the debugger to resume execution of your program while in the
midst of action list processing:

call

continue

goto

next

return

step

Any command that contains an expression whose evaluation involves calling a function
in your program

In all of these cases, the debugger temporarily suspends processing of the current breakpoint to
start your program executing again and then waits for that execution to complete. As long as no
new breakpoint is triggered during that executi