
GENEKIT

another BLUP software
(Vincent Ducrocq, June 30, 2011)

1. Background

GENEKIT is a BLUP software, initially derived from the blupf90 program of Ignazy Mizstal, with
which it has very little in common now. Initially, it was implemented to improve some aspects of
blupf90, in particular:

• A more user-friendly parameter file, where variables have names (and not just order numbers,
source of many mistakes);

• A more efficient solution algorithm: a preconditioned conjugate gradient algorithm in which the
preconditioner is not just a diagonal but an incomplete block Cholesky factor of the coefficient
matrix. This proved to be very efficient to quickly move information in one iteration from
progeny to parents several generations away and back, with a strong effect on convergence rate;

• A more efficient (but more restricted) approach for multiple trait settings, with systematic
canonical decomposition including in situations with missing values on some traits and/or
heterogeneous residual variances.

Other features were (and still are being) included, depending on personal needs. These include:
• an approximation of reliabilities using Harris and Johnson’s (1998. J. Dairy Sci., 81:2723-2728)

approach (not available for all models);
• Reliabilities extended to the random regression case (Ducrocq and Schneider., 2007.

Generalization of the information source method to compute reliabilities in test day models.
Interbull Bulletin n°37, 82-87)

• a modelling of heterogeneous residual variances;
• an easier treatment of univariate (fixed and random) regressions with storage of continuous

covariates (splines, Legendre polynomials, eigenvectors, etc.) in small tables (no need to have all
coefficients for each record in the input data file);

• an automatic production of some by-product results (residuals, mendelian sampling estimates,
pre-adjusted records, daughter deviations, equivalent daughter matrices and vectors of daughter
yield deviation for test day models, etc.);

• some tools to monitor convergence, restarts and storage.

2. Installation

The version considered here is the one available on June 30, 2011. All the subroutines and the makefile
for unix and linux systems and a test example are in the file genekit20110630.tar.Z. To use it, first copy
to an appropriate directory, uncompress and untar. Modify the Makefile options according to your
fortran compiler. Compile.
To use the program, use the script called genekit. If param is your parameter file, just type:

genekit param or genekit param > log_filename

At INRA, you can find GENEKIT in the /logiciels/GENEKIT directory for the AIX (unix) system and
in /ugen/ugenvpd/bao/GENEKIT on the linux machine dga8 and dga10 (and soon for dga11)

Under GENEKIT, you will find the genekit script (which can be copied in your directory) in the BIN
directory, all elements to run the example in EX/test_genekit.tar, this manual in the MAN directory and
the source code in the SRC directory (all programs and subroutine in genekit_300611.tar, or in
uncompressed form in last_version/). You will also find the executable genekit.exe but you don’t
necessary need to copy it if you use the genekit script. Note: for old GENEKIT users using AIX(unix),
previous versions of the executable can be reached by simply adding OLD/ after BIN.

3. Distribution

GENEKIT is for your own use, at your own risk. Please do not distribute it. Any request from new
users should go through me. Among other things, I want to keep track of who is using GENEKIT to be
able to inform users about bugs and new versions.

4. Parameter file

List of main keywords
Any line starting with # is a comment
In bold underlined : compulsory keywords (not underlined = optional keywords)

TITLE
DATAFILE
OLD_CODE_FILE
STORAGE
NCOMBIMAX
SYSTEM_SIZE
SOLUTIONS
CHECK_CONVERGENCE
STARTING_VALUES
COLUMN_NAMES
TABLES
ALIAS
NAME_OF_TRAITS
MODEL
MODEL_HETEROGENEITY
 ^
 RANDOM_HETEROGENEITY |
 RANDOM_TYPE_HETEROGENEITY (as many times as necessary)
 VARIANCE_HETEROGENEITY
 AUTOCORRELATION_PARAMETER v
TYPE_OF_EFFECTS
WEIGHTS
ALGORITHM
CONVERGENCE
MAX_ITERATIONS
BLOCK_CHOLESKY
FILL_IN
DEFINE_COMBINED_SOLUTIONS
TREATED_AS_MISSING
COMPUTE_RELIABILITY
BY_PRODUCT_OUTPUT
DEFINE_BY_PRODUCTS
BY_PRODUCT_COLUMNS
RANDOM_RESIDUAL
 ^

RANDOM_GROUP |
RANDOM_TYPE (as many times as necessary)
FILE |
(CO)VARIANCES v

END

5. Detailed description of keywords

TITLE
 The following line is used as a title in the output.
DATAFILE

(compulsory) The next line is the name of the input data file. This file (as any other file used or
written by GENEKIT) is an ASCII, free format file will blanks used as separators

OLD_CODE_FILE
 (Only useful at INRA, for those who used the recode program of Bernard Bonaïti for preparation

of the input data file)
The solution file(s) will include the original code (can be a combination of codes). The name of
the file connecting old to new code (created by recode) must be given on the next line.

STORAGE
 If “STORAGE ON_DISK”, the data file will be repeatedly read on disk. Be aware that this

option may have a quite detrimental impact on CPU time
 Default value: STORAGE IN_CORE. the data file is read and stored in core memory.
SYSTEM_SIZE
 On the next line: upper bound u of the number of nonzero elements of the mixed model

coefficient matrix.
 If not specified, the default value is u = max(100000, coef * number of equations) where neff is

the number of fixed and random effects and coef = max(6,1+neff*(neff+1)/2)).
Be careful: if a very large number is specified, you may ask too much and GENEKIT may crash
because of lack of memory… Conversely, if you put a value which is unnecessarily too large,
GENEKIT will tell you. A trial and error approach should lead to an optimum value (large
enough, without crashing)
If you later use MODEL_HETEROGENEITY to model the logarithm of residual variances,
you may need a second value v after u (on the same line): v is an upper bound of the number of
nonzero elements in the linear system used to estimate the effects on the residual variance. The
default value is v=100000 and is usually enough.

NCOMBIMAX
The next line indicates the maximum number of combinations of missing records in a multiple
trait setting (for example, with 3 traits, this number is 7 (no missing traits, trait 1, 2, 3 or 1 and 2,
1 and 3, 2 and 3 may be missing – 1, 2 and 3 missing is not counted as it is .. a missing record).
The default value is large (400) so this statement may be needed only in very large multiple trait
evaluations.

SOLUTIONS
 (compulsory) on the next line: name (or root of names) of the solution files(s)
 Only one solution file is created, except if after the solution file, one adds the “separate”

keyword:
 “SOLUTIONS separate”.
 Then one solution file is created for each effect in the model with name= root name followed by

“.eff” if eff is the name of the effect given in COLUMN_NAMES. An integer can also be added
after the file name (or after “combined” or “separate”, if these keyworks are used) to indicate
the frequency at which solutions are stored. For

 example, “solfile 40” or “solfile separate 40” implies that the file will be stored every 40
iterations and specific convergence criteria (changes between solutions 40 iterations apart) will
be computed.

STARTING_VALUES

 On the next line: name of the file with starting values (for example, solutions obtained after a
reduced number of iterations).

 The file(s) has (have) the same structure as the solution file(s). For example, one may have one
file per effect in the model. In this case, indicate:

 “STARTING_VALUES separate”
CHECK_CONVERGENCE
 On the next line: name of the file with solutions that will be used to compute extra convergence

criteria (for example, distance to “exact” solutions, if the exact solutions were previously stored).
This may be used to test different implementation strategies to achieve faster convergence.

 The file(s) has (have) the same structure as the solution file(s). For example, one may have one
file per effect in the model. In this case, use:

 “CHECK_CONVERGENCE separate”
COLUMN_NAMES
 (compulsory) On the next lines, (ordered) names of the variables in the data file. Any variable

used as cross-classified effect in the model should be coded from 1 to k, where k is the number of
levels for that effect.

TABLES
 On the next lines, one can specify continuous variables that the program will create for fixed or

random regression models.
 Currently implemented are spline coefficients, Legendre polynomials coefficients, and

coefficients read from an external file.

• Example with splines:
c1 c2 c3 c4 = splines[DCC] splin1 100 150 200 265

creates a table called “splin1” with all spline coefficients here called c1, c2, c3, c4 corresponding
to cubic splines with 4 knots at 100, 150, 200 and 265. These coefficients will be stored in core
and will be referred to through the variable DCC.
In other words, only DCC is needed in the input data file: c1,c2, c3, c4 are automatically created
for all records.
In case splines_no_int is used instead of splines, the first spline coefficient (intercept) is not
used (case where splines are nested within a particular effect).

• Example with Legendre polynomials

d1 d2 d3 legendre[DIM] leg 5 335
creates a table called “leg” for the coefficients (d1, d2, d3) of a Legendre polynomial of order 2
between 5 and 335. These coefficients will be stored in core and will be referred to through the
variable DIM.
In other words, only DIM is needed in the input data file. d1, d2, d3 are automatically created for
all records.

• Example with external files

vp1 vp2 vp3 vp4 = external_file[DIM] TD/tab_vpl_G
This will read the coefficients vp1 to vp4 (for example, coefficients associated with 4
eigenvectors) from file TD/tab_vpl_G . They will be stored in core and will be referred to
through the variable DIM.
In other words, only DIM is needed in the input data file. vp1, vp2, vp3, vp4 are automatically
created for all records.

One can have several splines or Legendre polynomials or external files defined on different lines
(with a different set of variable names c1,c2… and a different table name). A separate file is
created for each table name.

ALIAS
 In some cases, one may want to use the same variable(s) twice, for example year may be fit

directly into the linear model but also in the model of log- residual variances. To prevent
confusion while avoiding storing twice the same information in the input data file, one can use
aliases.
On the next line(s), a second name is given to each variable of interest. For example:

year2 = year
This new name can later be used as if it was actually present in the list of variables of the input
data file.

NAME_OF_TRAITS
 (compulsory) The next line lists the names of the traits analysed. This is necessarily a
 subset of the list given in “COLUMN_NAMES”
MODEL
 (compulsory) The next line(s) describes the model of analysis. Examples:

• trait1 = herd age year (=simple fixed effects model)
• trait1 trait2 = herd age[year] (bivariate analysis age nested with year)
 or equivalently : trait1 = herd age[year]
 trait2 = herd age[year]
• trait1 = herd d1 d2 d3 (spline or Legendre or any coefficients defined in TABLE)
• trait1 = herd d1[age] d2[age] d3[age] (polynomials or splines within age class)
• trait1 = herd age animal
 trait2= herd age animal
 trait3= herd age animal (multiple trait animal model)
• trait1 = herd dcc c1[age] c2[age] c3[age] c4[age] d1[anim] d2[anim] d3[anim]
 (fixed and random regression model)

 A number of restrictions exist. Some may disappear in the future with new versions of

genekit. The main ones are that models for multiple trait analyses must be identical and must
include no more than one random effect other than the residual (but missing data are allowed).

MODEL_HETEROGENEITY
 Specifies that the model has heterogeneous residual variances. If the second keyword is

multiplicative as in:
 MODEL_HETEROGENEITY MULTIPLICATIVE
 Heterogeneous residuals variances affect all effects (fixed et random effects: multiplicative

model)
 otherwise only the random part is affected as in Robert-Granié et al (1999). Accounting for

variance heterogeneity in French dairy cattle genetic evaluation, Livestock Production Science,
60, 343-357.

 The next line(s) describes the model for the logarithm of the residual variance, when needed.

Examples:
• size = age year2

which means that the expected value of ln(residual variance) is the sum of an age effect
and a year effect.

• size udder feet = age year2 technician
• Milk = region herdyear

RANDOM_HETEROGENEITY

 The next line lists the effect in the model of the log-residual variance to be treated as random
(e.g., technician or herdyear in the last two models above). If several effects are treated as
random, this statement and the following two (or three) are repeated as often as needed.

RANDOM_TYPE_HETEROGENEITY
 The next line defines the variance structure of the effect appearing in

RANDOM_HETEROGENEITY. Two possibilities are offered:
• diagonal

The levels of the technician effects are uncorrelated
• autocorrelation filename

The levels of the herdyear effects are autocorrelated. To specify the structure (herdyear
effects are autocorrelated within herd), the file filename specifies this structure: it has (at
least) 3 columns: column 1 has consecutive numbers (1 to nhy_max), column 2 has herd
effects, columns 3 has year effect. This file must be sorted appropriately: within a herd, if
two consecutive lines have year number equal to 3 and 4 respectively, the correlation
between the corresponding herdyear effects is the autocorrelation ρ (also works correctly
for years more than one year apart).
Example: 1 1 1
 2 1 2
 3 2 4
 4 2 5
 5 2 7
 6 2 8 …

VARIANCE_HETEROGENEITY
 The next line specifies the value of the variance of the effect appearing in RANDOM_

HETEROGENEITY. If n traits are analysed, n values should appear.
 If VARIANCE_HETEROGENEITY is followed by FIXED (on the same line), the values

indicated will remain constant; otherwise they will be iteratively updated.
AUTOCORRELATION_PARAMETER
 The next line specifies the value of the autocorrelation for the effect appearing in

RANDOM_TYPE_HETEROGENEITY with autocorrelation.
 If AUTOCORRELATION_PARAMETER is followed by FIXED (on the same line), the value

indicated will remain constant; otherwise it will be iteratively updated.
TYPE_OF_EFFECTS
 (compulsory) The next line(s) indicate(s) the type of effect in the model(s) (including
 for the of the log-residual variance).
 One line per type (cross = cross-classified, cov = continuous covariate). Example:
 cross herd age anim
 cov dcc c1 c2 c3 c4 d1 d2 d3
 Cross-classified effects must have been recoded from 1 to k, where k is the number of levels
 There is no need to specify the type of nested effects (e.g., d1[age] or age[herd] for a different

continuous covariate d1 for each age level or a age by herd effect)
WEIGHTS
 The next line gives variable name(s) which represent(s) the weight associated to the records of

each trait. The names point to either a variable of the input data file (a variable included in the
COLUMN_NAMES list) or a name defined in the TABLE or ALIAS statements. For multiple
traits, each weight name must be connected to the relevant trait by adding “[name_of_the_trait]”.
For example: sizw[sire] udw[udder]

 When no weight name is attached to a particular trait, the default value is a weight of 1 for all
records for that trait. When no weight is attached to any trait, either delete the statement or leave
a blank line after WEIGHTS.

ALGORITHM
 The next line specifies the algorithm to be used for solution of the linear system. Currently, three

possibilities are given:
 direct, conjugate_gradient or conjugate_gradient on_data

• direct leads to the exact solution using fspak subroutines. It is applicable only in the
univariate case. This is the default value (this may be changed in the future).

• conjugate_gradient. The solution relies upon a preconditioned conjugate gradient (PCG)
algorithm of univariate linear systems (after canonical transformation in case of multivariate
analyses), where the preconditioner -only one, even for multiple trait analyses- is an
incomplete Cholesky factorization of the coefficient matrix. The keywords FILL_IN and
BLOCK_CHOLESKY give flexibility to the choice of the preconditioner (see below).

• conjugate_gradient on_data is for very large application when the full coefficient matrix
cannot/should not be stored in core memory. Then, calculations are based iteration on data
techniques.

CONVERGENCE
 The next line includes the value of the desired convergence criterion. If residual variance

heterogeneity is accounted for, a second criterion is needed on the same line for the log-residual
variance model. The convergence criterion is (currently) the average absolute change in solutions
between two consecutive iterations. The default values are 0.0001 and 0.001. Note that with
PCG, this is not necessarily the best convergence criterion: it is often quite conservative.

 Adding the keyword BASED_ON_RANDOM leads to slightly more reliable checks of
convergence, based only on random effects: as no constraint on fixed effects is imposed,
complex cases may lead to “drifts” of fixed effects (e.g., one varying by ∆ between two iterations
while another is varying by –∆) even after random effects have converged.

 The statement is ignored when the algorithm chosen is direct.
MAX_ITERATIONS
 The next line includes one, two or three numbers specifying the maximum of iterations

performed before the program is stopped..
 The first one is for regular mixed models solution. The second is relevant only for multiple trait

analyses with missing values on some traits and indicates the number of conjugate gradient
iterations to perform between two updates of the missing values (a value less than 5 is
recommended; a value of 1 is usually fine). The third value specifies the maximum number of
updates of the effects describing the heterogeneous residual variances.

 For example, “40 1 15” means that 15 times (at most, i.e. if convergence criteria are not reached
before) 40 conjugate gradient iterations will be performed before new estimates (possibly
together with the variance and/or autocorrelation of random effects) of the model describing the
heterogeneous residual variances are computed.

 If a value of 0 is specified for the third parameter (e.g.,”200 1 0”) and the program is started
reading previous solutions, the estimates of the heterogeneous residual variances are used and
kept fixed during the whole run.

 The default values are 200, 1 and 20.
 The statement is ignored when the algorithm chosen is direct.
BLOCK_CHOLESKY
 The preconditioner of the PCG algorithm is an incomplete Cholesky factor (ICF) of (univariate)

mixed model coefficient matrix. Note that an “exact” ICF, that is a Cholesky factor for which all
the positions where nonzero elements in the initial coefficient matrix are kept in the ICF is too
time-consuming and above all, fails in many cases (requires the square root of a negative
number). Then, the computation of the preconditioner is restarted after the addition of a constant
positive value on the diagonal of the coefficient matrix. If the decomposition fails again, the

constant is doubled and so on, until the decomposition can be performed. But in such cases, the
final preconditioner can be very inefficient and convergence can be very slow.

 It was found that a sparser ICF, where the decomposition is performed on blocks of the
coefficient matrix, is faster, requires less storage and is much more efficient than the exact ICF.
The BLOCK_CHOLESKY statement permits to choose the appropriate blocks. The default
value (that is when BLOCK_CHOLESKY is not specified) is one block per effect. Then the
preconditioner is very sparse (= a diagonal, except for the blocks involving a relationship
matrix). But in some cases, other blocking strategies may be better. For example, it seems that all
spline coefficients for one particular effect may be advantageously treated together in a single
block. This is done by simply putting on a same line all effects that should be treated in the same
block. Examples:

 herd
 dcc
 c1 c2 c3
 d1 d2 d3 d4
 or
 herd dcc c1 c2 c3 d1 d2 d3 d4 (= exact ICF)
 or
 herd
 …
 d3 (= default)
 d4
FILL_IN
 This is another way to improve the preconditioner. The next line indicates the number m of extra

terms added to each line of the ICF (whatever the blocking strategy), i.e., m elements which were
0 in the initial coefficient matrix are allowed to be nonzero in the ICD. These elements are
chosen by the preconditioning subroutine. The larger m, the better the ICF. For a very large m,
the ICF tends to the exact Cholesky factor. But an increase of m automatically leads to a slower
factorisation and to more memory space required.

 The default value is 0. Larger values than 20 are not recommended.
 TREATED_AS_MISSING
 The next line gives the rules used to define missing values. These are similar to the ones used in

PEST. Three numbers are needed. All values smaller than the first one, equal to the second one
or larger than the third one are considered as missing.

 For example: -100. 0. 50. means that values less than -100, equal to 0 or larger than 50 will be
considered as missing.

 Do not forget this statement if 0 is considered as a missing value!
DEFINE_COMBINED_SOLUTIONS
 The next lines specify linear combinations of the original estimated breeding values in random

regression models, representing for example the average lactation production, the production in
first lactation, a measure of persistency, etc.

 Each line is composed of a new variable name, the ‘=’ sign, a coefficient and the name of an
effect appearing in the MODEL statement and if needed and as many times as necessary, a ‘+’
sign, another coefficient and another name of an effect. For example:

 g_all = 0.5 vg1 + 0.3 vg2 + 0.2 vg3
 A specific solution file will be created named “solutionfilename_comb”
COMPUTE_RELIABILITY

 The next lines lead to the computations of specific by-products of genetic evaluations: specifies:
scalar reliabilities using Harris and Johnson’s information source approach (Harris and Johnson,
1998, Approximate reliabilities of genetic evaluations under an animal model. J. Dairy Sci. 81,

2723-2728), matrix reliabilities (Ducrocq and Schneider., 2007. Generalization of the
information source method to compute reliabilities in test models. Bulletin n°37, 82-87) for
random regression models, daughter yield deviations and corresponding ECD for test-day
models (Tauebert et al, 2010. An approach to compute EDC and DYD for test-day models. 9WCGALP,
Leipzig, Germany, 231).

 If the first line following COMPUTE_RELIABILITY is yes or yes_only, the reliability is

computed and stored in a file derived from the solution file name by adding “.reliab”. In case of
“yes_only”, the program stops after the reliability computation, before iterating on mixed model
equations. If the line is blank, reliability will not be computed.

 If yes is not followed by tdm (on the same line), the model is not a random regression model
(e.g., a test-day model). Then several options are available:
• If yes or yes_only is followed by ignore_correlations, reliabilities will be univariate ones,

even though a multiple trait model has been defined.
• If yes or yes_only is followed by without_grand_children, reliabilities will be based only on

parent, own performance and first generation progeny. ignore_correlations and
without_grand_children can be used together.

 If yes is followed by tdm, the model is not a random regression model (e.g., a test-day model).
Again, a number of options are proposed:
• tdm can be followed by dyd (on the same line), in which case a vector of daughter yield

deviations (DYD, or more correctly, daughter corrected performances, i.e., average
performances of the daughters of a male corrected for all non genetic effects in the model
and the additive genetic contribution of their dam) and a matrix of equivalent daughter
contributions (EDC) are computed.
In fact these are transformed in such a way that they appear as several pseudo-records which
can be used as new records for a random regression model (several scalar DYD and
corresponding vectors of EDC coefficients are created in a file called “solutionfilename.dyd”
which can be used as an imput file. Contact me for details.

• The next line may contain the keyword dyd_combined, in which case DYD and scalar EDC
are computed for the combined effects defined in DEFINE_COMBINED_SOLUTIONS.

Whether the model is a random regression model, better reliability estimates are obtained if the
following statements are added on the next lines:
• contemporary cg_eff where cg_eff represents a “contemporary group” effect, for example, a

herd effect, which will be absorbed in order to account in the reliability calculation for the
loss of information due to its estimation.

• permanent pe_eff or:
• permanent pe_eff1 pe_eff2 pe_eff” … for random regression models

pe_eff or the pe_eff_i represent the permanent environment effect(s) which are to be
absorbed too.

BY_PRODUCT_OUTPUT
 The next line specifies the file name where by-product information will be stored.
DEFINE_BY_PRODUCTS
 This statement allows the definition of new variables to be included in the by-product file and

which cannot be simply specified with the keywords available to compute standard outputs (see
below).
• These new variables can be functions of the data and the estimates of some effects can be

obtained using the keywords calculate or calculatew
One line for each new variable describes how to compute it as:
New_variable = calculate[variable coef1 eff1 coef2 eff2 …]
For example, the statements:

 corrected = calculate[milk -1 hys -1 lact -1 age_at_calving]
 sum_fixed= calculate[1 hys 1 lact 1 age_at_calving]
will define the new variable corrected after taking away the estimates of the herd-year-season,
lactation and at calving effects and the variable sum_fixed will compute the sum of these three
fixed effects from each milk yield record in the original dataset.
The corrected and sum_fixed variables must appear in the BY_PRODUCT_COLUMNS
statement.
If calculatew is used in models where heterogeneous residual variances are modelled, the new
variables are standardized to a common residual variance.

• new_weight is used when the initial weight (specified in WEIGHTS or 1) is corrected to take
into account the contemporary group size (i.e., if the contemporary group size is n, the new
weight is the initial one multiplied by (1 – 1/n)
corr_weight =new_weight[milk] is the weightof the trait “milk” accounting for the cg_eff
contemporary group effect indicated in “contemporary cg_eff” of the
COMPUTE_RELIABILITY statement. corr_eff will appear for each initial record if it is
specified in the list of BY_PRODUCT_COLUMNS below.

BY_PRODUCT_COLUMNS
The next line indicates the names of all the variables that will be stored in the by product file.

These can be any variables coming from the original file as well as:
• Residuals (records corrected for all estimated fixed and random effects). They are indicated

by RESID[trait_name] or by RESIDW[trait_name] if the residuals are to be standardized to
a common residual variance (corresponding to a weight of 1)

• Pre-ajusted records (records corrected for all estimated fixed and random effects, except for
the random effects to which a relationship matrix is attached). They are indicated by
PREADJ[trait_name] or by PREADJW[trait_name] if the residuals are to be standardized to
a common residual variance (corresponding to a weight of 1).

• “daughter deviations” (records corrected for all estimated fixed and random effects, except
for the random effects to which a relationship matrix is attached, but including the
contribution of the dam). They are indicated by D_DEV[trait_name] or by
D_DEVW[trait_name] if the residuals are to be standardized to a common residual variance
(corresponding to a weight of 1).
Note that this statement is not valid for random regression models.

• mendelian sampling terms (computed as the genetic effect of an animal (or a sum of all
effects to which a relationship matrix is attached) minus half the sum of the genetic effect of
its parents. They are indicated by MENDEL[trait_name].

• estimated weights of residuals in models accounting for heterogeneous residual variance. This
is indicated by WR[trait_name].
In all cases, missing values are indicated by -9999. This is essential to remember that when
some of these values (e.g., pre-adjusted records) are to be used in another evaluation,
TREATED_AS_MISSING has to be modified accordingly.

RANDOM_RESIDUAL
 (compulsory) The next lines specify the residual variance matrix (or scalar = one line) to be

used. Each line of the matrix must be on one line with any format but with blanks between
columns. If a univariate analysis is desired for each trait, whatever the form of the (co)variance
matrix, write RANDOM_RESIDUAL univariate. This is the default when a model accounting
for heterogeneous residual variances is applied on several traits in the same analysis.

RANDOM_GROUP
 The next line specifies the name of one or several effects treated as random with a given

(co)variance pattern, for example: “animal” for an animal model or “d1 d2 d3” for a random

regression model. This keyword as well as the next ones (RANDOM_TYPE, FILE and
(CO)VARIANCES) are repeated as often as needed.

RANDOM_TYPE
 The next line indicates the type of (co)variance structure used. It can be either
• diagonal
• add_animal (regular relationship matrix, 0 = unknown parent)
• add_an_upg (relationship matrix with unknown parent groups;
 unknown parents group codes are larger than animal codes)
• add_an_upgi (same as add_an_upg but with inbreeding coefficients column)
• add_sire (relationship matrix between males (sires-maternal grandsire))
• add_an_upg (relationship matrix between sires-maternal grandsires
 with unknown parent groups; unknown parents group codes are larger than animal codes)

FILE
 The next line is either blank (diagonal case) or contains the name of the pedigree file. This

pedigree file has three columns (animal, sire, dam or animal, sire, maternal grand-sire) except for
add_an_upgi for which a fourth column specifies the inbreeding coefficient. Animals are
numbered from 1 to na; unknown parent groups from na+1 to na+nupg

(CO)VARIANCES
 The next lines specify the random effect(s) (co)variance matrix (or scalar = one line) to be used.

Each line of the matrix must be on one line with any format but with blanks between columns.
END
 All lines after this statement are ignored.

6. Examples

• A univariate mixed model
TITLE
Example from Helene
DATAFILE
/ugend/ugenhel/TD/datavinc.dat
#OLD_CODE_FILE <= commented out
#newcode <= commented out
SYSTEM_SIZE
400000
SOLUTIONS
true
STARTING_VALUES
 <= don’t forget the blank line (or delete STATING_VALUES)
COLUMN_NAMES
ani_p ani_g hy dtar HTD calv_m camp DIM calv_a numlac dim2 DCC Fat coef_weightl
eig1 eig2 eig3 eig4 eig5 eig6 tvp1 tvp2 tvp3 tvp4 tvp5 tvp6
NAME_OF_TRAITS
Fat
MODEL
Fat = HTD calv_m calv_a tvp1[ani_g] tvp2[ani_g] tvp3[ani_g] tvp4[ani_g]
tvp5[ani_g] tvp6[ani_g]
TYPE_OF_EFFECT
cross HTD calv_m calv_a
cov tvp1 tvp2 tvp3 tvp4 tvp5 tvp6
WEIGHTS
coef_weightl
ALGORITHM
conjugate_gradient
CONVERGENCE
0.00001
MAX_ITERATIONS
500
FILL_IN
2
TREATED_AS_MISSING
-9999 0 9999
RANDOM_RESIDUAL
4200000
RANDOM_GROUP
tvp1 tvp2 tvp3 tvp4 tvp5 tvp6
RANDOM_TYPE
add_an_upg
FILE
/ugend/ugenhel/TD/ped.dat
(CO)VARIANCES
7680453.2 0.0000 0.0000 0.000 0.0000 0.0000
 0.0000 938010.9 0.0000 0.000 0.0000 0.0000
 …

• The same example with 50 iterations more and use of tables
TITLE
Second example from Helene
DATAFILE
/ugend/ugenhel/TD/datavinc.dat
SYSTEM_SIZE
400000
SOLUTIONS
true2

STARTING_VALUES
true
COLUMN_NAMES
ani_p ani_g hy dtar HTD calv_m camp DIM calv_a numlac dim2 DCC Fat coef_weightl
eig1 eig2 eig3 eig4 eig5 eig6 tvp1 tvp2 tvp3 tvp4 tvp5 tvp6
TABLES
coef = external_file [dim2] tab_weight
vp1 vp2 vp3 vp4 vp5 vp6 = splines[dim2] splin_coef 5 20 50 135 245 335
could also be, if splin_coef already exists :
#vp1 vp2 vp3 vp4 vp5 vp6 = external_file [dim2] splin_coef
note: tvp1 to tvp6 and coef_weightl are no longer needed in the data file
NAME_OF_TRAITS
Fat
MODEL
Fat = HTD calv_m calv_a vp1[ani_g] vp2[ani_g] vp3[ani_g] vp4[ani_g] vp5[ani_g]
vp6[ani_g]
TYPE_OF_EFFECT
cross HTD calv_m calv_a dim2
cov tvp1 tvp2 tvp3 tvp4 tvp5 tvp6
WEIGHTS
coef
ALGORITHM
conjugate_gradient on_data
CONVERGENCE
0.00001
MAX_ITERATIONS
50
FILL_IN
5
TREATED_AS_MISSING
-9999 0 9999
RANDOM_RESIDUAL
4200000
RANDOM_GROUP
vp1 vp2 vp3 vp4 vp5 vp6
RANDOM_TYPE
add_an_upg
FILE
/ugend/ugenhel/TD/ped.dat
(CO)VARIANCES
 7680453.2 0.0000 0.0000 0.000 0.0000 0.0000
 0.0000 938010.9 0.0000 0.000 0.0000 0.0000
 …

• A multiple trait example
TITLE
Type evaluation: 3 traits example
DATAFILE
type.dat
SOLUTIONS
solu separate
STARTING_VALUES

COLUMN_NAMES
vis age_an sta_an age_ty sta_ty poinan ps point anim elev date na nb ireg ian cp1f
pseu VTRA PSIL DPLJ
NAME_OF_TRAITS
VTRA PSIL DPLJ
MODEL
VTRA=age_an sta_an vis anim
PSIL=age_an sta_an vis anim
DPLJ=age_an sta_an vis anim
TYPE_OF_EFFECT
cross vis anim age_an sta_an
WEIGHTS

ALGORITHM
conjugate_gradient
CONVERGENCE
0.0001
MAX_ITERATIONS
200 2
BLOCK_CHOLESKY
vis
anim
age_an
sta_an
FILL_IN
0
TREATED_AS_MISSING
-10000 0 10000
RANDOM_RESIDUAL
 .500219 .000000 .000000
 .000000 1.666590 .181359
 .000000 .181359 .450611
RANDOM_GROUP
anim
RANDOM_TYPE
add_an_upg
FILE
pedig.recod
(CO)VARIANCES
 .124748 .000000 .000000
 .000000 .497880 .082468
 .000000 .082468 .248692

• Same example with modelling of residual variance heterogeneity and generation of pre-

adjusted records
TITLE
Type evaluation: 3 traits example, with heterogeneous residual variance
DATAFILE
type.dat
SOLUTIONS
solu2 separate

STARTING_VALUES
solu
COLUMN_NAMES
vis age_an sta_an age_ty sta_ty poinan ps point anim elev date na nb ireg ian cp1f
pseu VTRA PSIL DPLJ
NAME_OF_TRAITS
VTRA PSIL DPLJ
MODEL
VTRA PSIL DPLJ=age_an sta_an vis anim
MODEL_HETEROGENEITY
VTRA=age_ty sta_ty poinan ps
PSIL=age_ty sta_ty poinan ps
DPLJ=age_ty sta_ty poinan ps
RANDOM_HETEROGENEITY
poinan
RANDOM_TYPE_HETEROGENEITY
diagonal
VARIANCE_HETEROGENEITY
0.05 0.05 0.05
TYPE_OF_EFFECT
cross vis anim age_an sta_an poinan age_ty sta_ty ps
#WEIGHTS

ALGORITHM
conjugate_gradient
CONVERGENCE
0.0001 0.005
MAX_ITERATIONS
40 1 12
#BLOCK_CHOLESKY <= could be ignored because = default values
#vis
#anim
#age_an
#sta_an
#FILL_IN
#0
TREATED_AS_MISSING
-10000 0 10000
BY_PRODUCT_OUTPUT FILE
preadj.dat
BY_PRODUCT_COLUMNS
age_an sta_an age_ty sta_ty poinan elev point na nb ireg ian ntypepo cp1f ps
PREADJW[VTRA] PREADJW[PSIL] PREADJW[DPLJ] anim
RANDOM_RESIDUAL UNIVARIATE
 .500219 .000000 .000000
 .000000 1.666590 .181359
 .000000 .181359 .450611
RANDOM_GROUP
anim
RANDOM_TYPE
add_an_upg
FILE
pedig.recod
(CO)VARIANCES
 .124748 .000000 .000000
 .000000 .497880 .082468
 .000000 .082468 .248692

• An example for total merit index calculation
TITLE
Total merit index with 11 traits
DATAFILE
data_isu
SOLUTIONS
isutot separate
STARTING_VALUES

COLUMN_NAMES
ani mu miscod lait tp cell long EPTA ATAV DPLJ EQUI HATA VTRA FERG FERV W_lait W_tp
W_cell W_long W_mo W_FERG W_FERV fail
NAME_OF_TRAITS
lait tp cell long EPTA ATAV DPLJ EQUI HATA VTRA FERV
MODEL
 lait tp cell long EPTA ATAV DPLJ EQUI HATA VTRA FERV = mu ani
TYPE_OF_EFFECT
cross ani mu
WEIGHTS
W_lait[lait] W_tp[tp] W_cell[cell] W_long[long] W_FERV[FERV]
ALGORITHM
conjugate_gradient
CONVERGENCE
0.00005
MAX_ITERATIONS
300
TREATED_AS_MISSING
-10000000. -9999. 10000000.
COMPUTE_RELIABILITY
yes
RANDOM_RESIDUAL
 .9590E+06 .0000E+00 -.1645E+06 -78.34 .0000E+00 .0000E+00
 ...
RANDOM_GROUP
ani
RANDOM_TYPE
add_an_upg
FILE
ped_isu
(CO)VARIANCES
 .5755E+06 -512.1 ...
 ...

• A full test day model with computations of reliabilities and by-products
TITLE
 Full test day model from Helene Leclerc
DATAFILE
 Fix_3
SYSTEM_SIZE
 600000000 50000000
SOLUTIONS
 Rand 50 <= same name as starting value file  the original file will be overwritten
STARTING_VALUES
 Rand
COLUMN_NAMES
 ani_p HTD HTDnl cmvel cavel ctar HY mvel_nl tar_nl agev_nl reg_nl
 reg_camp tyqula ani DIM DCC nlac nlacb camp TP precor RESIDW
TABLES
 coef_w = external_file[DIM] TP/tab_weight
 vg1 vg2 vg3 vg4 = external_file[DIM] TP/GU
 vp1 vp2 vp3 vp4 = external_file[DIM] TP/PU
 vh1 vh2 = external_file[DIM] TP/HU
NAME_OF_TRAITS
 precor
MODEL
 precor = HTD cmvel cavel ctar vg1[ani] vg2[ani] vg3[ani] vg4[ani]
vp1[ani_p] vp2[ani_p] vp3[ani_p] vp4[ani_p] vh1[HY] vh2[HY]
MODEL_HETEROGENEITY
 TP = reg_camp reg_nl tyqula HY
RANDOM_HETEROGENEITY
 HY
RANDOM_TYPE_HETEROGENEITY
 autocorrelation R66/HY
VARIANCE_HETEROGENEITY
 0.100
AUTOCORRELATION_PARAMETER
 0.542
TYPE_OF_EFFECT
 cross HTD cmvel cavel ctar
 cov vg1 vg2 vg3 vg4 vp1 vp2 vp3 vp4 vh1 vh2
WEIGHTS
 coef_w
ALGORITHM
 conjugate_gradient on_data
CONVERGENCE
 0.0001
MAX_ITERATIONS
 50 1 6
BLOCK_CHOLESKY
 HTD
 cmvel
 cavel
 ctar
 vg1
 vg2
 vg3
 vg4
 vp1
 vp2
 vp3
 vp4
 vh1
 vh2
FILL_IN

 3
TREATED_AS_MISSING
 -9999 0 9999
COMPUTE_RELIABILITY
 yes tdm dyd
 dyd_combined
 contemporary HTD
 permanent vp1 vp2 vp3 vp4
DEFINE_COMBINED_SOLUTIONS
 G1 = -80.403 vg1 + -47.879 vg2 + -109.949 vg3 + 28.343 vg4
 G2 = -87.691 vg1 + -43.526 vg2 + 102.239 vg3 + 47.495 vg4
 G3 = -88.784 vg1 + -42.483 vg2 + -3.373 vg3 + -71.567 vg4
 P1 = 78.737 vp1 + 35.369 vp2 + 58.900 vp3 + 115.308 vp4
 P2 = 97.880 vp1 + 39.424 vp2 + 64.690 vp3 + -97.969 vp4
 P3 = 87.155 vp1 + 45.906 vp2 + -125.567 vp3 + 1.384 vp4
BY_PRODUCT_OUTPUT FILE
 Rand
BY_PRODUCT_COLUMNS
 ani_p HTD HTDnl cmvel cavel ctar HY mvel_nl tar_nl agev_nl reg_nl
 reg_camp tyqula ani DIM DCC nlac nlacb camp TP precor RESIDW[precor]
 RESID[precor]
RANDOM_RESIDUAL VALUES
 100
RANDOM_GROUP
 vg1 vg2 vg3 vg4
RANDOM_TYPE
 add_an_upg
FILE
 ped3L [column=4 A14 A14
(CO)VARIANCES RANDOM_UPG
 32.802859710502 0 0 0
 0 2.90080352973564 0 0
 0 0 0.860172329925959 0
 0 0 0 0.344246117676763
RANDOM_GROUP
 vp1 vp2 vp3 vp4
RANDOM_TYPE
 diagonal
FILE

(CO)VARIANCES
 9.02241492205739 0 0 0
 0 4.20965859092144 0 0
 0 0 1.72523104239631 0
 0 0 0 1.37666480149357
RANDOM_GROUP
 vh1 vh2
RANDOM_TYPE
 diagonal
FILE

(CO)VARIANCES
 16.1561544277188 0
 0 11.5271786876526
END

7. The test example
• Description
The example is a simulated test day (random regression) model evaluation used to validate the software
as in Leclerc et al (2008). The data set was generated based on a real data structure but the performances
were constructed based on simulated (i.e., known) fixed and random effects including the residual, in
such a way that the exact BLUP solutions are the simulated ones. For details see: Leclerc H., Wensch-
Dorendorf M., Wensch J, Ducrocq V and Swalve H.H., 2008 A general method to validate breeding value
prediction software. J. Dairy Sci. 91: 3179-3183.
The whole files are in the tar file test_genekit.tar
The data set datsim_pet3L.dat and the pedigree pedsim_pet3L.dat files are in the TDM_test directory.
The model for the trait “Milk” is a test day model including fixed effects for herd-testday (HTD), calving month
(calv_m), calving age (calv_age) and length of dry period (tar) as well as fixed regressions curves on days carried
calf (DCC) nested within lactation, days in milk (DIMr) within calving month and lactation, within length of dry
period and lactation, random regression curves on days in milk for 4 additive genetic effects (vg1 to vg4, after
transformation to make them uncorrelated), 4 permanent environment effects (vp1 to vp4) and 6 Herd-year
effects. Residuals are weighted (weight = coef_w)..
The fixed and random coefficients (legendre polynomials, splines, and specific coeffiocients) stored in different
tables in the TDM_test directory
The parameter file leads to the BLUE and BLUP estimation of all fixed and random effects as well as the
computation of estimated residuals which are stored in a byprod_new file.
To run
The solutions can be compared with the exact solutions (sotred in the TDM_test directory), for example using the
sas program anal_pet3L.sas which is supplied.

• Parameter file (named pet3L.par)
TITLE
Montbéliarde TDM data with 3 simulated lactations s
DATAFILE
TDM_test/datsim_pet3L.dat
#STORAGE
#on_disk
SYSTEM_SIZE
500000
SOLUTIONS
sol_pet3L 40
#STARTING_VALUES
#sol_pet3L
COLUMN_NAMES
ani_p HTD calv_m calv_a tar Hy DIMr mvel_nl tar_nl anim DCC nlac camp Milk
TABLES
coef_w = external_file[DIMr] TDM_test/tab_weight_pet3L
#51a 52a 53a 54a = splines_no_int[DCC] splin1b 100 150 200 265
vg1 vg2 vg3 vg4 = external_file[DIMr] TDM_test/tab_legG_pet3L
vp1 vp2 vp3 vp4 = external_file[DIMr] TDM_test/tab_legP_pet3L
vh1 vh2 vh3 vh4 vh5 vh6 = external_file[DIMr] TDM_test/tab_legH_pet3L
51a 52a 53a 54a = external_file[DCC] TDM_test/tab_spline_DCCpet3L
71a 72a 73a 74a 75a 76a = external_file[DIMr] TDM_test/tab_spline_DIMpet3L
81a 82a 83a 84a 85a 86a = external_file[DIMr] TDM_test/tab_spline_DIMpet3Lb
#ALIAS
#dim2=dim
NAME_OF_TRAITS
Milk
MODEL
Milk = HTD calv_m calv_a tar 51a[nlac] 52a[nlac] 53a[nlac] 54a[nlac] 71a[mvel_nl]
72a[mvel_nl] 73a[mvel_nl] 74a[mvel_nl] 75a[mvel_nl] 76a[mvel_nl] 81a[tar_nl]
82a[tar_nl] 83a[tar_nl] 84a[tar_nl] 85a[tar_nl] 86a[tar_nl] vg1[anim] vg2[anim]
vg3[anim] vg4[anim] vp1[ani_p] vp2[ani_p] vp3[ani_p] vp4[ani_p] vh1[Hy] vh2[Hy]

vh3[Hy] vh4[Hy] vh5[Hy] vh6[Hy]
TYPE_OF_EFFECT
cross HTD calv_m calv_a tar
cov 51a 52a 53a 54a 71a 72a 73a 74a 75a 76a 81a 82a 83a 84a 85a 86a vg1 vg2 vg3
vg4 vp1 vp2 vp3 vp4 vh1 vh2 vh3 vh4 vh5 vh6
WEIGHT(S)
coef_w
ALGORITHM
conjugate_gradient
#conjugate_gradient on_data
#direct
CONVERGENCE BASED_ON_RANDOM
0.0001
MAX_ITERATIONS
500
BLOCK_CHOLESKY
HTD
calv_m
calv_a
tar
51a 52a 53a 54a
71a 72a 73a 74a 75a 76a
81a 82a 83a 84a 85a 86a
vg1 vg2 vg3 vg4 vp1 vp2 vp3 vp4
vh1 vh2 vh3 vh4 vh5 vh6
FILL_IN
0
TREATED_AS_MISSING
-999999 0 999999
BY_PRODUCT_OUTPUT FILE
 byprod_new
BY_PRODUCT_COLUMNS
 ani_p HTD DIMr Milk RESID[Milk] RESIDW[Milk]
RANDOM_RESIDUAL VALUES
250
RANDOM_GROUP
vg1 vg2 vg3 vg4
RANDOM_TYPE
add_an_upg
FILE
TDM_test/pedsim_pet3L.dat
(CO)VARIANCES
 3.368877 0.000000 0.000000 0.000000
 0.000000 1.770808 0.000000 0.000000
 0.000000 0.000000 0.577778 0.000000
 0.000000 0.000000 0.000000 0.184885
RANDOM_GROUP
vp1 vp2 vp3 vp4
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
 2.365029 0.000000 0.000000 0.000000
 0.000000 1.799412 0.000000 0.000000
 0.000000 0.000000 0.592118 0.000000
 0.000000 0.000000 0.000000 0.496845
RANDOM_RESIDUAL VALUES
250
RANDOM_GROUP
vh1 vh2 vh3 vh4 vh5 vh6

RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
 4.329102 0.000000 0.000000 0.000000 0.000000 0.000000
 0.000000 1.510365 0.000000 0.000000 0.000000 0.000000
 0.000000 0.000000 1.307681 0.000000 0.000000 0.000000
 0.000000 0.000000 0.000000 0.799326 0.000000 0.000000
 0.000000 0.000000 0.000000 0.000000 0.591790 0.000000
 0.000000 0.000000 0.000000 0.000000 0.000000 0.432
END

• Commented output file (named out)

Note: here only the important information is described. A large number of the lines are skipped,
indicated below by “…………..”

Start with the title, the date of analysis, and a copy of the parameter file (with some extra information)
……………………………………………………………………………………………………….

 Montbéliarde TDM data with 3 simulated lactations s

 GENEKIT version June 30, 2011 - date of analysis: Wed Jun 29 16:36:41 2011

Describe the data file and its contents
FILES:
 Parameter file: pet3L.par
 Data file: TDM_test/datsim_pet3L.dat
 Solution file: sol_pet3L
 stored every 40 iterations

CONTENT OF FILES:
 Number of columns 14
 Column names: ani_p HTD calv_m calv_a tar Hy DIMr mvel_nl tar_nl anim
 DCC nlac camp Milk coef_w vg1 vg2 vg3 vg4 vp1
 vp2 vp3 vp4 vh1 vh2 vh3 vh4 vh5 vh6 51a
 52a 53a 54a 71a 72a 73a 74a 75a 76a 81a
 82a 83a 84a 85a 86a

Describe the variables read in tables

 Number of dummy variables created 31
 created in the TABLES section :

 in table: TDM_test/tab_weight_pet3L, indexed by variable DIMr
 Column coef_w = value obtained from column 1 of external file

 first 5 lines and last 5 lines of table TDM_test/tab_weight_pet3L
 1 0.352179
 2 0.358633
 3 0.365203

……………………………………………………………………………………………………….
 992 3.34000 0.656607E-01 0.490624E-01 0.298281 0.734681 0.633402
 993 3.35000 0.664287E-01 0.496719E-01 0.302427 0.747411 0.653523

Describe the model (effects included and their type)

 Number of Traits 1
 Number of Effects 34
 Position of Observations 14
 Names of Weight coef_w for Milk
 coef_w is created from table TDM_test/tab_weight_pet3L and indexed by variable DIMr

 Values less than -999999. are considered as missing
 Values larger than 999999. are considered as missing
 Values equal to 0.00000 are considered as missing

EFFECTS
 effect HTD is cross-classified
 effect calv_m is cross-classified
 effect calv_a is cross-classified
 effect tar is cross-classified
 effect 51a is a continuous covariable nested within nlac
 whose coefficients come from table TDM_test/tab_spline_DCCpet3L
 effect 52a is a continuous covariable nested within nlac
 whose coefficients come from table TDM_test/tab_spline_DCCpet3L

 ……………………………………………………………………………………………………….

MODEL
 trait 1 : Milk = HTD + calv_m + calv_a + tar + 51a [nlac] + 52a [nlac] + 53a [nlac] + 54a [nlac] +
71a [mvel_nl] + 72a [mvel_nl] + 73a [mvel_nl] + 74a [mvel_nl] + 75a [mvel_nl] + 76a [mvel_nl] + 81a [
tar_nl] + 82a [tar_nl] + 83a [tar_nl] + 84a [tar_nl] + 85a [tar_nl] + 86a [tar_nl] + vg1 [anim] +
vg2 [anim] + vg3 [anim] + vg4 [anim] + vp1 [ani_p] + vp2 [ani_p] + vp3 [ani_p] + vp4 [ani_p] + vh1
[Hy] + vh2 [Hy] + vh3 [Hy] + vh4 [Hy] + vh5 [Hy] + vh6 [Hy]

Describe the solving algorithm

ALGORITHM
 for solution of mixed model equations: Conjugate gradient iterations storing XpX in core
 Convergence criteria will consider random effects only

 Incomplete Cholesky blocks:
 in block 1:
 effect 1 : HTD
 in block 2:
 effect 2 : calv_m

……………………………………………………………………………………………………….
Specify (Co)variance structure(s) for random effects

(CO)VARIANCES
 Residual (co)variance Matrix
 Milk 250.00

 correlated random effects vg1 vg2 vg3 vg4
 Type of Random Effect: additive animal with unknown parent groups
 Note: specified covariance matrix is diagonal
 Pedigree File: TDM_test/pedsim_pet3L.dat

 trait effect (CO)VARIANCES
 Milk vg1 3.3689 0.0000 0.0000 0.0000
 Milk vg2 0.0000 1.7708 0.0000 0.0000
 Milk vg3 0.0000 0.0000 0.57778 0.0000
 Milk vg4 0.0000 0.0000 0.0000 0.18488

 correlated random effects vp1 vp2 vp3 vp4
 Type of Random Effect: diagonal
 Note: specified covariance matrix is diagonal

 trait effect (CO)VARIANCES
 Milk vp1 2.3650 0.0000 0.0000 0.0000
 Milk vp2 0.0000 1.7994 0.0000 0.0000
 Milk vp3 0.0000 0.0000 0.59212 0.0000
 Milk vp4 0.0000 0.0000 0.0000 0.49684

 correlated random effects vh1 vh2 vh3 vh4 vh5 vh6
 Type of Random Effect: diagonal
 Note: specified covariance matrix is diagonal

 trait effect (CO)VARIANCES
 Milk vh1 4.3291 0.0000 0.0000 0.0000 0.0000 0.0000
 Milk vh2 0.0000 1.5104 0.0000 0.0000 0.0000 0.0000
 Milk vh3 0.0000 0.0000 1.3077 0.0000 0.0000 0.0000
 Milk vh4 0.0000 0.0000 0.0000 0.79933 0.0000 0.0000
 Milk vh5 0.0000 0.0000 0.0000 0.0000 0.59179 0.0000
 Milk vh6 0.0000 0.0000 0.0000 0.0000 0.0000 0.43201

Describe structure of byprod file

BY PRODUCTS
 Storage in file byprod_new of the following variables:
 in column 1 : ani_p

 in column 2 : HTD
 in column 3 : DIMr
 in column 4 : Milk
 in column 5 : residual of trait Milk i.e., trait 1
 in column 6 : standardized residual of trait Milk i.e., trait 1

Give important information about the data and pedigree files (number of observations, overall statistics)
 Statistics per trait :
 Milk : mean = 255.8 std = 206.03 (9736 observations)
 min = -584.9 max = 1041.
 mean weight = 0.8972 weight std = 0.27162
 min weight = 0.2896 max weight = 1.294

 pedigree file = TDM_test/pedsim_pet3L.dat
 pedigree length : 3286 largest animal or unknown parent group number : 3290
 Matrix to store pedigree allocated: 4 x 3290

Display first and last lines of pedigree file
 First and last 5 pedigree records
 1 862 428 1
 2 1258 427 1
 3 805 748 1
 4 800 749 1
 5 800 750 1

 3281 3287 3287 3
 3282 3287 3287 3
 3283 3287 3287 3
 3284 3286 3285 1
 3285 3287 3287 3
 3286 3287 3287 3

 Groups of unknown parents from 3287 to 3290

Give information about each effect in the model

 Number of levels per effect :
 HTD : 2197 (equations 1 to 2197)
 calv_m : 82 (equations 2198 to 2279)
 calv_a : 54 (equations 2280 to 2333)
 tar : 43 (equations 2334 to 2376)
 51a : 1 coefficient(s) * 3 continuous covariate(s), (equations 2377 to 2379) with
 mean = 0.3539 std = 0.47819 min = 0.000 max = 1.000
 52a : 1 coefficient(s) * 3 continuous covariate(s), (equations 2380 to 2382) with

……………………………………………………………………………………………………….
 mean = -0.7979 std = 2.1187 min = -5.393 max = 5.682
 vh6 : 1 coefficient(s) * 292 continuous covariate(s), (equations 18871 to 19162) with
 mean = -0.9737 std = 1.9243 min = -8.030 max = 3.745
 => Total number of equations = 19162
 check convergence considering only random effects (equations 2491 to 19162)
 Storage allocated for the data: (9736 x 14)

Call to the system to know cpu used
 read data file again and store
 cpu ==> ugenvpd 7475222 5693672 A 00:01 00:00:00 0,0 0,0 0 2524 genekit.
 datafile = TDM_test/datsim_pet3L.dat
 end of data storage (9736 records stored)
 cpu ==> ugenvpd 7475222 5693672 A 00:01 00:00:00 0,0 0,0 0 4652 genekit.

Preparation (may include reading starting solutions)

INITIALIZATION
 initialization of solutions for effect HTD

PREPARATION STEP
 XX has been created
 (maximum number of nonzero elements expected in XX : 500000)
 No elements added to XX before decomposition
 parameters of trait 1 used for the preconditioner
 allocate xlist 500000 = 0 Meg
 allocation OK
 cpu ==> ugenvpd 7475222 5693672 A 00:02 00:00:00 0,0 0,0 0 16764 genekit.
 create_xx is now finished
 pedigree file read in 0 s, 72743 nonzeroes

 add_random is now finished (or skipped if fixed effect model)
 cpu ==> ugenvpd 7475222 5693672 A 00:03 00:00:00 0,0 0,0 0 20300 genekit.
 read file in 0 sec
 convergence criterion : 0.100E-03
 maximum number of iterations : 500
 start at solution= 0 (True/False) : F
 extra terms /line in incomplete Cholesky : 0

Computation of the preconditioner when (preconditioned) conjugate gradient is used
PRECONDITIONING
 compute preconditioner with alpha = 0.000

 total number of nonzero elements in incomplete Cholesky = 72743
 end of incomplete Cholesky in 0 sec
 preconditioner is now computed (final alpha = 0.000)
 cpu ==> ugenvpd 7475222 5693672 A 00:03 00:00:00 0,0 0,0 0 32060 genekit.
 allocate xlist 500000 = 0 Meg
 allocation OK
 cpu ==> ugenvpd 7475222 5693672 A 00:03 00:00:00 0,0 0,0 0 32060 genekit.
 XX built and stored in 2 sec

 Number of nonzero elements in XX : 464040

 cpu ==> ugenvpd 7475222 5693672 A 00:06 00:00:03 4,5 0,0 0 34908 genekit.

Actual iterations. Note the definition of the convergence criteria

ITERATIVE SOLUTION
 right-hand side updated in 0 sec
 Convergence criteria with respect to previous iteration
 average abs(change), standardized norm of residual, max change and equation number
it 1 trait 1 iter 1 ave= 0.101D+02 ||resid||= 0.265D+00 max= 0.230D+02 17699
 solutions stored in file: sol_pet3L
it 2 trait 1 iter 2 ave= 0.763D+02 ||resid||= 0.186D+00 max= 0.366D+02 12354
it 3 trait 1 iter 3 ave= 0.223D+02 ||resid||= 0.819D-01 max= 0.667D+01 17464
it 4 trait 1 iter 4 ave= 0.304D+02 ||resid||= 0.542D-01 max= 0.599D+01 15644

……………………………………………………………………………………………………….
it 39 trait 1 iter 39 ave= 0.541D-01 ||resid||= 0.515D-03 max= 0.188D+00 5201
it 40 trait 1 iter 40 ave= 0.244D+00 ||resid||= 0.508D-03 max= 0.184D+00 9036
it 41 trait 1 iter 41 ave= 0.687D-01 ||resid||= 0.541D-03 max= 0.102D+00 17673

In the “SOLUTIONS” statement, it was specified that solutions 40 iterations will be stored and compared
Note again the definition of convergence criteria 40 iterations apart.

 ! --
 ! Convergence criteria 40 iterations apart
 ! for each effect: M <==> mean solution;
 ! S <==> standard deviation of solutions;
 ! D <==> average change in solutions;
 ! std <==> standard deviation of change;
 ! R <==> correlations between solutions;
 ! Min/Max <==> maximum decrease /
 ! increase in solutions and corresponding level
 ! --
 solutionfile=sol_pet3L
 41 1 HTD M= 0.257D+03 S= 0.262D+02 D= -0.661D+01 s= 0.27D+02 R= 0.60321 Min -.197D+03 : 1052 Max
0.120D+03 : 2156
 41 1 calv_m M= 0.000D+00 S= 0.764D+01 D= 0.000D+00 s= 0.26D+02 R= 0.26464 Min -.733D+02 : 77 Max
0.599D+02 : 49
 41 1 calv_a M= 0.000D+00 S= 0.317D+01 D= 0.000D+00 s= 0.23D+02 R= 0.33574 Min -.527D+02 : 50 Max
0.655D+02 : 8
 41 1 tar M= 0.000D+00 S= 0.366D+01 D= 0.000D+00 s= 0.18D+02 R= 0.53804 Min -.645D+02 : 28 Max
0.367D+02 : 34
 41 1 51a M= 0.270D+00 S= 0.112D+01 D= -0.324D+02 s= 0.11D+02 R= 0.47591 Min -.458D+02 : 3 Max

……………………………………………………………………………………………………….
 41 1 vh5 M= -0.703D-03 S= 0.168D+00 D= -0.661D-01 s= 0.11D+01 R= 0.41539 Min -.659D+01 : 289 Max
0.807D+01 : 25
 41 1 vh6 M= 0.615D-03 S= 0.151D+00 D= 0.214D-01 s= 0.74D+00 R= 0.37567 Min -.324D+01 : 225 Max
0.240D+01 : 54
 solutions stored in file: sol_pet3L
it 42 trait 1 iter 42 ave= 0.292D-01 ||resid||= 0.512D-03 max= 0.135D+00 17535
it 43 trait 1 iter 43 ave= 0.287D-01 ||resid||= 0.478D-03 max= 0.111D+00 17535
it 44 trait 1 iter 44 ave= 0.367D-01 ||resid||= 0.479D-03 max= 0.114D+00 5576

……………………………………………………………………………………………………….
it 336 trait 1 iter 336 ave= 0.833D-03 ||resid||= 0.124D-05 max= 0.273D-03 12326
it 337 trait 1 iter 337 ave= 0.132D-03 ||resid||= 0.117D-05 max= 0.185D-03 17679
it 338 trait 1 iter 338 ave= 0.731D-03 ||resid||= 0.112D-05 max= 0.365D-03 8934
it 339 trait 1 iter 339 ave= 0.154D-03 ||resid||= 0.126D-05 max= 0.221D-03 17702
it 340 trait 1 iter 340 ave= 0.133D-03 ||resid||= 0.119D-05 max= 0.261D-03 17523
it 341 trait 1 iter 341 ave= 0.109D-03 ||resid||= 0.111D-05 max= 0.251D-03 17702
it 342 trait 1 iter 342 ave= 0.717D-04 ||resid||= 0.107D-05 max= 0.292D-03 8950

The convergence criterion was reached. Final solutions are stored and results are compared with solutions 40
iterations before.

 solutions obtained in 3 sec
 *** System(s) solved in 6 sec
 solutionfile=sol_pet3L
9999 1 HTD M= 0.257D+03 S= 0.248D+02 D= 0.724D-02 s= 0.55D-01 R= 1.00000 Min -.105D+00 : 421 Max
0.133D+00 : 1044
9999 1 calv_m M= 0.000D+00 S= 0.803D+01 D= 0.000D+00 s= 0.39D-01 R= 0.99999 Min -.160D+00 : 21 Max
0.811D-01 : 54
9999 1 calv_a M= 0.000D+00 S= 0.278D+01 D= 0.000D+00 s= 0.19D-01 R= 0.99998 Min -.423D-01 : 21 Max
0.341D-01 : 48

……………………………………………………………………………………………………….
9999 1 vg1 M= -0.381D-01 S= 0.431D+01 D= -0.227D-02 s= 0.63D-03 R= 1.00000 Min -.463D-02 : 119 Max
0.140D-02 : 1316
9999 1 vg2 M= -0.182D+01 S= 0.270D+01 D= -0.142D-02 s= 0.67D-03 R= 1.00000 Min -.317D-02 : 3227 Max
0.877D-03 : 2696
9999 1 vg3 M= -0.674D+00 S= 0.674D+00 D= 0.169D-03 s= 0.25D-03 R= 1.00000 Min -.741D-03 : 2696 Max
0.119D-02 : 1316
9999 1 vg4 M= -0.427D+00 S= 0.251D+00 D= -0.147D-02 s= 0.28D-03 R= 1.00000 Min -.277D-02 : 2933 Max -
.872D-03 : 3149
9999 1 vp1 M= 0.409D-03 S= 0.570D+01 D= -0.149D-04 s= 0.52D-03 R= 1.00000 Min -.166D-02 : 180 Max
0.146D-02 : 411
9999 1 vp2 M= -0.360D-03 S= 0.469D+01 D= 0.266D-04 s= 0.44D-03 R= 1.00000 Min -.151D-02 : 76 Max
0.129D-02 : 261
9999 1 vp3 M= 0.448D-03 S= 0.109D+01 D= -0.294D-05 s= 0.23D-03 R= 1.00000 Min -.760D-03 : 405 Max
0.669D-03 : 76
9999 1 vp4 M= 0.273D-03 S= 0.125D+01 D= -0.256D-05 s= 0.25D-03 R= 1.00000 Min -.972D-03 : 405 Max
0.724D-03 : 128
9999 1 vh1 M= 0.122D-03 S= 0.176D+01 D= 0.273D-04 s= 0.80D-03 R= 1.00000 Min -.301D-02 : 103 Max
0.273D-02 : 68
9999 1 vh2 M= -0.146D-03 S= 0.421D+00 D= 0.655D-05 s= 0.22D-03 R= 1.00000 Min -.813D-03 : 65 Max
0.613D-03 : 144
9999 1 vh3 M= -0.779D-04 S= 0.479D+00 D= 0.357D-05 s= 0.31D-03 R= 1.00000 Min -.114D-02 : 50 Max
0.150D-02 : 285
9999 1 vh4 M= 0.204D-03 S= 0.276D+00 D= 0.605D-05 s= 0.18D-03 R= 1.00000 Min -.860D-03 : 264 Max
0.704D-03 : 263
9999 1 vh5 M= 0.372D-03 S= 0.168D+00 D= 0.558D-05 s= 0.10D-03 R= 1.00000 Min -.542D-03 : 64 Max
0.663D-03 : 290
9999 1 vh6 M= 0.107D-03 S= 0.150D+00 D= -0.764D-05 s= 0.96D-04 R= 1.00000 Min -.535D-03 : 63 Max
0.417D-03 : 281
 solutions stored in file: sol_pet3L

By-products are computed

 by-products of the evaluation stored in file: byprod_new
 (= 9737 records)
 total cpu time: 6 sec

