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1 Introduction
The GSEVM is a program for analysing data with heterogeneous variances. This model links the
phenotype of a given animal with two sets of systematic (fixed effects in frequentist approach) and
random effects which contribute to the mean and to a function of the environmental variance. It has
the following structure:

Y = Xβ + Za+ f
(
X̃β̃, Zã

)
ε

where Xβ and a represent the systematic and random factors which have an effect on the mean and

X̃β̃ and ã those which act on the variability of the trait; f being the function for modelling the
environmental variance and ε ∼ N(0, I). The genetic effects a and ã are assumed to be Gaussian:(

a
ã

)
| G ∼ N

((
0
0

)
, G⊗A

)
where, A is the additive genetic relationship matrix, and

G =

[
σ2a ρσaσã

ρσaσã σ2ã

]
with σ2a and σ2ã the additive genetic variance for a and ã respectively, and ρ the coefficient of genetic
correlation in the joint distribution of a and ã (see appendix C for further details).

The core of this software was written by Noelia Ibañez, it uses an MCMC algorithm and considered
an animal model for continuous traits. It has been modified by Milagros Garcia in order to deal with
three different functions for modelling the environmental variance :

Exp : f1

(
X̃β̃, Zã

)
= exp

(
X̃β̃ + Zã

2

)
, as in San Cristobal et al (1998).

Sqr : f2

(
X̃β̃, Zã

)
=

√
X̃β̃ + Zã, as in Mulder et al (2007).

Lin : f3

(
X̃β̃, Zã

)
= X̃β̃ + Zã, as in Garcia et al (2009).
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Main specifications of the present version are:
• Univariate analysis
• Continuous trait
• Animal model with repeated records
• Only numerical fields for data and pedigree files.

The program is in active development so errors are possible and some features may not work or work
incorrectly. This beta version admits input files similar to those of ASREML.

2 Software limitations
This program admits up to eight systematic effects (β plus β̃). However, not more than one covariable
(that may acts on the mean and on the variance or on both) and one no genetic random effect (that
may acts on the mean and on the variance) can be fitted in the model.

3 How to run the program
To run the program you need to put in a text file called ’Parameter’ the path and name of the
parameters file you want to use (ex: C:\home\parameters\my parameters file.txt). Then type the
command GSEVM in your terminal.
To obtain graphical output, it is necessary to get R software installed on the machine. Two R-files
are needed, ”principal.r” and ”statistics.r”, they can be launched at any time after the burn-in period
typing ”R CMD BATCH principal.r”. Graphical outputs are in a pdf file described in the parameter
file section, to see this file type command ”acroread” followed by the name of the graphical file.

4 Backup copy process
After the burning period, all computed values are saved each 2 hours in all files created by the software.
After any stop (accidental computer break or normal end) of the program, if these files still exist and
were not modified, it is possible to restart using the values stored at the last saving iterations (see
Reload).

5 How to cite GSEVM
Use this software for research must be acknowledge in publications citing the relevant paper:
N. Ibáñez-Escriche, M. Garcia and D. Sorensen. 2009. GSEVM v2 (Genetical Structured
Environmental Variance Model) User Guide.

6 Parameters and Input files
All data files used for the program are text files containing real and integer values only in free format.
This program is driven by a parameter file, which is called ‘Parameter’ file (see section 3), the format
of which is shown below. Some lines of this parameter file can be empty, the word Optional appears
to indicate them. Key-words in capital and Arial need to be included as they appear. Fields in italic
are those replaced by users.
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6.1 SUMMARY OF THE PARAMETER FILE

TITLE
Description or title of the problem

Optional; description of the problem. If the first word in the title is ”Reload”, then the program
restarts using the same input files and the files saved at the last saving iteration (see Details of pa-
rameter file)

SEED
seed

Optional; random seed to start the program (with a format of an integer of up to 8 digits). If
more than 8 digits are given, the program take only the first eigth. If a real number is given, the
program take only the integer part. If this line is empty the program uses a seed from the system.

INBREEDING FILE
f1

Optional; the inbreeding file is f1. Put an empty line if no inbreeding file is provided.

DATA FILE
f2

The data file is f2.

MODEL
mod

indicates the function for modelling the environmental variance; Exp, Sqr or Lin.

nf, np, nc

nf is the total number of systematic effects (β plus β̃. If the model includes the average mean,
the value of nf is the total number of systematic effects +1). np and nc represent the existence of no
genetic random effect and covariable respectively, np=1 if ”no genetic random effect” exists or 0 if
not; nc=1 if the covariable exists or 0 if not.

nlf1, nlf2, . . . , nlfnf , nlp, nanim

number of levels for the systematic effect 1, 2, . . . , nf,
levels for the no genetic random effect if it exists (if it does not exist nlp is not specified in this

line),
total number of animals in the pedigree file.

systm1, systm2, . . . , systmnf , randomm, additivem, covariablem

model for the mean as a vector of ntf terms (0 or 1), where ntf=nf+np+nc+1, is the total num-
ber of the factors (average mean, systematic, no genetic random and genetic effect and covariable)
present in the model (1 indicates that the factor is present in the model, otherwise 0).
If overll mean is fitted, one systematic effect with only one level must be added (see page 8).

systv1, systv2, . . . , systvnf , randomv, additivev, covariablev

model for the environmental variance as a vector of ntf terms (0 or 1, 1 indicates that the factor
is present in the model, otherwise 0) .

PEDIGREE FILE
f3

The pedigree file is f3.

3



ITER LACK BURN-IN
iter lack burn

Parameters for the chain sampling. Total number of iterations, interval between samples and
burn-in period.

FIX FIXR COV COVR
fixm fixv covm covv

Initial values for the mean of the mean and the variance (fixm and fixv), and for the regression
coefficient for the mean and the variance (covm and covv).

VA VAR R
va vr r

Initial values for the variances of the genetic effect on the mean model (σ2a) and on the environ-
mental variance model (σ2ã), and correlation (ρ).

VP VPR
vp vpr

Initial values for the variance of the permanent effect on the mean model (σ2p) and on the envi-

ronmental variance model (σ2p̃).

GENERATION FILE
f4

Optional; if a name file is indicated, the program computes at the end of the iterations, the
means and the variances of the genetic values per generation and per line.

Remark 1 It has to be noticed that doing that, it does not include these factors in the model.

SUMMARY OUTPUT FILE
f5

Optional; name of the output file that will contain the summary of the results. If this line is
empty, the program uses the default name file: SUMMARY in the current directory.

BREEDING VALUES FILE
f6

Optional; name of the file that will contain the estimated breeding values for the mean and for
the variance model respectively. If this line is empty, the program uses the default name file: BREED-
INGV in the current directory.

SYSTEMATIC EFFECTS FOR THE MEAN FILE
f7

Optional; name of the file that will contain the marginal posterior distribution of the systematic
effect values for the mean model estimated by the program. If this line is empty, the program uses
the default name file: SYSTEMATICS in the current directory.

SYSTEMATIC EFFECTS FOR THE VARIANCE FILE
f8

Optional; name of the file that will contain the marginal posterior distribution of the systematic
effect values for the environmental variance model estimated by the program. If this line is empty,
the program uses the default name file: SYSTEMATICS1 in the current directory.

VARIANCE FILE
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f9

Optional; name of the file that will contain the marginal posterior distribution of the variance
values for the mean and the environmental variance models respectively, estimated by the program.
If this line is empty, the program uses the default name file: VARIANCES in the current directory.

GENERATION LINE OUTPUT FILE
f10

Optional; name of the file that will contain the marginal posterior distribution of the generation
and line effects in case when a generaton file has been given. If this line is empty, the program uses
the default name file: MEGELI in the current directory.

GRAPHICAL OUTPUT FILE
f11

Optional; name of the file that will contain the graphical results. This file is a ”pdf” file. If this
line is empty, the program uses the default name file: GRAPHICS in the current directory.
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6.2 EXAMPLE OF A PARAMETERS FILE:

TITLE
This is a description of the problem
SEED
67825564587
INBREEDING FILE
Inbreed.dat
DATA FILE
Datafile2
MODEL
Exp
1 0 0
1 1000
1 1
1 1
PEDIGREE FILE
Pedigreefile
ITER LACK BURN-IN
500 10 50
FIX FIXR COV COVR
3.5 0.5 0.00 0.0
VA VAR R
1.0 0.2 0.5
VP VPR
0.0001 0.0001
GENERATION FILE

SUMMARY OUTPUT FILE
Summaryfile
BREEDING VALUES FILE
../Test/Breedingfile
SYSTEMATIC EFFECTS FOR THE MEAN FILE
Systfile
SYSTEMATIC EFFECTS FOR THE VARIANCE FILE
../../Syst1file
VARIANCE FILE
Varfile
GENERATION LINE OUTPUT FILE
Generat
GRAPHICAL OUTPUT FILE
Graphfile
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6.3 DETAILS OF THE PARAMETER FILE AND OTHER INPUT FILES

TITLE
This line is for the title of the problem and to restart the software after an accidental break or a
normal end.
At each hour the software saves all values of the current iteration in a saving file and updates the
output files. If the first word of the title line is ”Reload”, then the software reads the saved files to
continue the computation with the number of iterations in the parameter file (This parameter ITER
is the only value that could be changed in case of reload).
The output files will be updated and will contain the values for all iterations (initial + reload)

INBREEDING FILE
Name and path of the inbreeding file, for example: ../../Variance/file/inbreeding.txt
In this inbreeding file all animals in the pedigree file, have to be listed from the oldest to the youngest
with the Wright’s inbreeding coefficient (F).
If this inbreeding file does not exist or is not indicated in the parameters file, the program will not
take into account the inbreeding between animals in the analysis.
Example of the inbreeding file: suppose the oldest animal is identified by the number 1 and the
youngest one by the number 470, so the inbreeding file could be:
1 0.0
2 0.0
3 0.0
...

...
468 0.125
469 0.0
470 0.07

MODEL
In this part is indicated:
The function for modelling the environmental variance.
The total number of systematic effects, plus one if the average of the model has to be calculated,
(either for the mean or for the variance), the existence or not of a no genetic random effect and the
existence or not of a covariable.
The levels for the systematic and no genetic random effects.
The structure of the model.
Exp
2 1 1
2 3 400 470
1 0 1 1 1
1 1 0 1 0

first line:
Exp
here we indicate the residual variance function (in this case Exponential as in San Cristobal et al
(1998)); two other functions are also available: Sqr and Lin (see page 1).
second line:
2 1 1
here we consider 2 systematic effects, a no genetic random effect and a covariable. At least one sys-
tematic effect (overall mean) must exist.
third line:
2 3 400 470
the first systematic effect contains 2 levels and the second one 3 levels; we have 400 levels for the no
genetic random effect and 470 animals in the pedigree.
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The program will compute only the overall mean if only one systematic effect with one level is indi-
cated.
1 0 1 1 1
this line indicates the factors which affect the mean. For example, in this case the second systematic
effect does not influence the mean. And we consider two random effects (additive genetic effect, no
genetic random effect) and the existence of covariable.
1 1 0 1 0
this line indicates the factors which affect the environmental variance (here, two systematic effects are
used on the variance model). In this case, the no genetic random effect and the covariable are not
affecting the residual variance.

Remark 2 Only one no genetic random effect is allowed.
Only one covariable can be fit on the mean trait or the environmental variance.
At least it is necessary one systematic effect with one level as such the overall mean (µ).

PEDIGREE FILE
The pedigree file has the following format
animal number, sire number and dam number
1 471 0
2 471 0
3 471 0

...
467 8 54
468 2 22
469 3 48
470 5 19

Remark 3 When sire and/or dam are unknown their number must be replaced by either n+1 or 0.

Remark 4 The file has to be sorted so that the line giving the pedigree of an individual appears before
any line where that individual appears as a parent.

DATA FILE
Data file must contain levels of systematic and no genetic random effects, covariable and data values.
Systematic and no genetic random effects have to be integer; covariable and data value can be real.
Animal have to be arranged from the oldest to the youngest and there is no text header in the file.
Data file has the following format:
animal number, syst1 effect level, syst2 effect level, . . . no genetic random effect level, covariable value,
data value.
Some example of data file are:
for instance: data file with a complete model:

1 1 3 1 50 101
2 1 2 2 20 8.3
2 2 3 2 30 9.5

...
400 2 3 400 50 12.0

In this there are 400 animals with records, two systematic effects, one no genetic random effect and a
covariable.
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ITER LACK BURN-IN
This program runs a single chain in each analysis. In this part of the parameter file the parameters
of the Markov chain of MCMC are defined:

• ITER determines the length of the MCMC

• LACK determines the interval between samples that will be saved from the MCMC, if LACK
is equal to 1, all samples will be saved, if LACK is equal to 5, each five iterations the sample
will be saved. The interval within samples, LACK, is used to reduce autocorrelation between
computed samples.

• BURN-IN determines the length of the burn-in period. All posterior samples before of the burn-in
period are discarded in the analysis and not saved.

FIX FIXR COV COVR
In this part the user provides the initial values used to start the program. FIX and FIXR are the
average value of the systematic effects on the mean and the environmental variance model respectively.
COV and COVR are the initial values for the regression coefficient on the mean and the environmental
variance model respectively.
FIX FIXR COV COVR
1.8 0.2 0.2 0.5

Remark 5 FIXR usually need smaller values than FIX.

VA VAR R
VA and VAR are the initial genetic variance values. R is the initial value for the correlation.
VA VAR R
1.0 0.2 0.5

VP VPR
VP and VPR are the initial values for the no genetic random effects on the mean and residual variance
respectively.
Vp VPR
0.8 0.3

GENERATION FILE
This file contain a first line with the number of generations and the population lines. After this first
line, the following lines have three components: the animal identification, the generation number and
the line number. This file requires to have only integer values. The generation file has the following
format:
10 3
1 1 1
2 1 2

...
469 5 3
470 6 2
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7 Output files
While the program is runing some information are written on the screen:

• name of files used

• number of the current iteration (each lack), variance components: σ2a, σ
2
ã, ρ, (σ2p, σ

2
p̃) if they

exist

• DIC value

This program provides seven output files, if the names and paths of these files are not given in the
parameter file the program uses default file names: SUMMARY, BREEDINGV, VARIANCES, SYS-
TEMATICS, SYSTEMATICSR, MEGELI and GRAPHICS and put them in the working directory.
Otherwise, the program takes the names and paths given in the parameters file. For explanation
purposes we will suppose the default names. Three others files are automatically generated in order
to use the ”Reload” mode, this files are: ”gammas”, ”no genetic” and ”no genetic last”, they contain
the last values used to compute the last estimated genetic values, mean of no genetic effect and the
last estimated values of the no genetic effect, respectively.

7.1 SUMMARY
This file provides a summary of the analysis results.
In this part, the variances of the proposal distributions are shown (kb*,kbCOV*,kp,...). The variance
proposal is an important key value, because it can determine the acceptance ratio of the samples
in the Metropolis Hasting. Acceptance ratios in the neighborhood of 1 imply very similar values
between previous and proposed states and the chain will move very slowly. On the other hand, if
the proposed displacement is too large and falls where the posterior has not support, this will lead to
a high rejection rate. This software uses an adaptative algorithm in order to adjust these variances
and obtain acceptance ratios of around 0.4. Here, the chain will remain in the same state for many
iterations.
A more detail description of the proposal variances is in the subsection algorithm and implementation
(appendix C)
The summary file is shown bellow with the following format (fields in italic and with xxx would be the
result):

***************** GSEVM RESULTS ******************

TITLE: This is a description of the problem

****************************************************
This analysis (CPU time) took: xxx seconds
Date of the analysis (yyyy/mm/dd): xxxx/xx/xx
Time of the analysis (hh/mm/ss) xx/xx/xx

****************************************************

INITIAL SEED: xxx
FINAL SEED: xxx

****************************************************
Parameter file: parameters file name
Inbreeding file: inbreeding file name and number of animals
Data file: data file name
Pedigree file: pedigree file name
Generation file: generation file nname, number of generations and number of lines

****************************************************

MCMC PARAMETERS

ITER: xxx
ITER SAUV: xxx
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LACK: xxx
BURN-IN: xxx

****************************************************

MODEL

Number of animals in the pedigree file: xxx
Number of records in the data file: xxx
Number of systematic effects: xxx
Number of no genetic random effects: xxx
Number of covariables: xxx
Number of level for systematic effects 1: xxx
...

Number of level for no genetic random effect: xxx

Model as in parameter file: xxx

xxx xxx xxx
xxx xxx xxx xxxx
xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx
xxx xxx xxx xxx xxx

****************************************************

DIC VALUES

Deviance: xxx
Effective number of parameters: xxx
DIC: xxx

****************************************************

VARIANCES AND CORRELATION

POSTERIOR MEAN OF THE GENETIC ADDITIVE VARIANCE FOR THE MEAN σ2a [SD]:
xxx[xxx])

POSTERIOR MEAN OF THE GENETIC ADDITIVE VARIANCE FOR THE VARIANCE σ2ã
[SD]: xxx[xxx])

POSTERIOR MEAN CORRELATION [SD]: xxx[xxx])
POSTERIOR MEAN OF THE NO GENETIC RANDOM EFFECT FOR THE MEAN σ2p [SD]:

xxx[xxx])
POSTERIOR MEAN OF THE NO GENETIC RANDOM EFFECT FOR THE VARIANCE σ2p̃

[SD]: xxx[xxx])

****************************************************

ACEPTANCE RATIOS
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b* = xxx partial b* = xxx kb* = xxx

bCOV* = xxx partial bCOV* = xxx kbCOV* = xxx
p = xxx partial p = xxx kp = xxx
p* = xxx partial p* = xxx kp* = xxx
vp = xxx partial vp = xxx kvp = xxx
vp* = xxx partial vp* = xxx kvp* = xxx
a = xxx partial a = xxx ka = xxx
a* = xxx partial a* = xxx ka* = xxx
va = xxx partial va = xxx kva = xxx
va* = xxx partial va* = xxx kva* = xxx
R = xxx partial R = xxx kr = xxx

****************************************

RESULTS OF ADDITIVE MEANS FOR GENERATION AND LINE

additive mean, generation, line

RESULTS OF ADDITIVE VARIANCE MEANS FOR GENERATION AND LINE

variance additive mean, generation, line

==========================================
STATISTICS OF SYSTEMATIC EFFECTS FOR THE MEAN
==========================================

Effects Min 1Quant Median Mean 3Quant Max SD
xxx xxx xxx xxx xxx xxx xxx xxx

==========================================
STATISTICS OF SYSTEMATIC EFFECTS FOR THE VARIANCE
==========================================

Effects Min 1Quant Median Mean 3Quant Max SD
xxx xxx xxx xxx xxx xxx xxx xxx

==========================================
STATISTICS OF COVARIABLE FOR THE MEAN
==========================================

Effects Min 1Quant Median Mean 3Quant Max SD
xxx xxx xxx xxx xxx xxx xxx xxx

==========================================
STATISTICS OF COVARIABLE FOR THE VARIANCE
==========================================

Effects Min 1Quant Median Mean 3Quant Max SD
xxx xxx xxx xxx xxx xxx xxx xxx

==========================================
STATISTICS OF GENETIC VARIANCE FOR THE MEAN
==========================================
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Effects Min 1Quant Median Mean 3Quant Max SD
xxx xxx xxx xxx xxx xxx xxx xxx

==========================================
STATISTICS OF GENETIC VARIANCE FOR THE VARIANCE
==========================================

Effects Min 1Quant Median Mean 3Quant Max SD
xxx xxx xxx xxx xxx xxx xxx xxx

==========================================
STATISTICS OF CORRELATION BETWEEN GENETIC VALUES
==========================================

Effects Min 1Quant Median Mean 3Quant Max SD
xxx xxx xxx xxx xxx xxx xxx xxx

==========================================
STATISTICS OF THE NO GENETIC VARIANCE FOR THE MEAN
==========================================

Effects Min 1Quant Median Mean 3Quant Max SD
xxx xxx xxx xxx xxx xxx xxx xxx

==========================================
STATISTICS OF THE NO GENETIC VARIANCE FOR THE VARIANCE
==========================================

Effects Min 1Quant Median Mean 3Quant Max SD
xxx xxx xxx xxx xxx xxx xxx xxx

==========================================
STATISTICS OF THE GENETIC VALUES FOR THE MEAN
==========================================

Effects Min 1Quant Median Mean 3Quant Max SD
xxx xxx xxx xxx xxx xxx xxx xxx

==========================================
STATISTICS OF THE GENETIC VALUES FOR THE VARIANCE
==========================================

Effects Min 1Quant Median Mean 3Quant Max SD
xxx xxx xxx xxx xxx xxx xxx xxx

==========================================
Normality-test for A
==========================================

One-sample Kolmogorov-Smirnov test
data: genetic values for the mean model
alternative hypothesis: two-sided
D= xxx p-value= xxx
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==========================================
Normality-test for AR
==========================================

One-sample Kolmogorov-Smirnov test
data: genetic values for the mean model
alternative hypothesis: two-sided
D= xxx p-value= xxx

7.2 BREEDINGV
The BREEDINGV file contains, for all animals in the pedigree file, the animal number and the mean
of his posterior additive genetic values for the mean a and the environmental variance ã, respectively.
Example:

1 0.12 0.02
2 0.05 -0.05

...
470 0.1 0.01

7.3 SYSTEMATICS
The program give two output files for estimation of systematic effects. The first one, called SYSTEM-
ATICS, contains samples of the marginal posterior of systematic effects and of the covariable of the
mean model. The second one, called SYSTEMATICSR, contains samples of the marginal posterior of
systematic effects and of the covariable for the residual variance model. The samples are in columns
and follow the order of the systematic effects defined in the parameter file in model section followed
by the covariable.

7.4 VARIANCES
This file contains the samples of the marginal posterior distribution of the variance components. The
order of the columns are:
σ2a, σ

2
ã, σ

2
p, σ

2
p̃

7.5 MEGELI
If the user gives a GENERATION file, the program generates one file with the average of the posterior
additive values of the mean trait and his residual variance for each generation and each line in the
corresponding iteration. These effects are not computed, instead of they stem from the posterior
distribution of the genetic values.

7.6 GRAPHICS
This pdf file contains the graphical outputs of the analysis for all parameters, the order of the graphics
are:

• historic diagram.

• posterior density.

• autocorrelation between each saved iteration (lack).

• boxplot.

• posterior distributions of all levels together of each systematic effect (10 by graphic).
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• boxplot of all levels togeteher.

• for the genetic values this file contains also the normality test.
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APENDIX

A Algorithm and implementation
The model analysed is a non standard linear model which has considerable computational problems.
In order to obtain efficient samples, different MCMC (Markov chain Monte Carlo) strategies are im-
plemented. In this section it will be made a brief description of the algorithm and his implementation.
However, a more detailed description can be found in [3, 4]

• Gibbs sampling: a conventional blocking Gibbs sampling [3] was used for β since it is the only
full conditional distribution known.

• Adaptative Metropolis Hasting: allows to sampler from a unknown conditional distribution.
This algorithm is used to sampler all parameters except β. The algorithm generates a Markov
chain a1, a2, · · · as follows. Given the current value ai of the Markov chain a proposal aprop is
generated from a proposal density q(aprop | y), with probability

(1) min

{
1,
p(aprop | y)q(ai | aprop)
p(ai | y)q(aprop | y)

}
the new state ai+1 is given by aprop, otherwise ai+1 = ai. The target of this algorithm is to choose
a suitable proposal density q that allows obtain efficient samples from the posterior density. In
this software two different proposal have been choosen:

– Random walk proposal: is a multivariate normal density centered in the current value xi

of the Markov chain and with covariance hI where h is a user-specified proposal variance
and I is the identity matrix, i.e. q(aprop | ai) is the density of N(ai, hI). This proposal
is commonly used, however, for high-dimensional problems the convergence can be very
slow and produce highly autocorrelated samples. In this software this proposal is used to
sampler the variances σa, σã, σp, σp̃, and the correlation coefficient ρ.

– Languevin Hastings proposal: unlike the random walk, this proposal use a gradient infor-
mation in the proposal density. The proposal density of a Languevin Hastings algorithm
is given by N(ai + h∇ log p(a |y )/2, hI) where ∇ log p(a |y ) is the gradient of the posterior
density. Intuitively, the use of gradient information helps to direct the algorithm towards
regions of high posterior density.

B Reparametrization
Simulation studies in Gustafson et al. [5] show that Langevin Hastings updates may not work well
if the components of a have a very different posterior variances. In applications in quantitative
genetics, the different animals may contribute with different number of observations and hence the
posterior variances may be very different. It may be useful to transform a and ã into quantities whose
components are less correlated a posteriori. Using the factorisation A = TDT ′ [1], where D is a

diagonal matrix, one may let a = σaγD
1
2T ′ and ã = ρσãγD

1
2T ′ +

√
1− ρ2σãγ̃D

1
2T ′ where γ and γ̃

are the priors standard normal N(0, I). The posterior correlation matrix of γ given y is then closer
to the correlation matrix I of the Langevin Hastings proposal.

C Theoretical background
C.1 The model
Consider the model which assumes that the environmental variance is heterogeneous and partly under
genetic control:

yi = x′iβ + z′ia+ w′ip+ f(x̃′iβ̃, z
′
iã, w̃

′
ip̃) εi
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for the exponential model,

f(x̃′iβ̃, z
′
iã, w̃

′
ip̃) = exp

(
x̃′iβ̃ + z′iã+ w̃′ip̃

2

)

where, yi is the ith observation of a given individual, β and β̃ are the vectors associated with the
sstematic effects, a and ã the random vectors associated with the genetic effects, p and p̃ are the
random vectors associated with the no genetic random effects and xi, x̃i zi, wi, w̃i are the incidence
vectors.
For the other two models, we proceed in the same way as bellow.

Prior following prior distributions were assigned to the parameters:

The systematic effects β and β̃ are assumed to be Uniform distribution,

β ∼ U (l, u) , β̃ ∼ U (l, u)

The genetic effects a and ã are assumed to be Gaussian:(
a
ã

)
| G ∼ N

((
0
0

)
, G⊗A

)
where A is the additive genetic relationship matrix, and

G =

[
σ2a ρσaσã

ρσaσã σ2ã

]
with, σ2a and σ2ã the additive genetic variance for a and ã respectively, and ρ the coefficient of genetic
correlation in the joint distribution of a and ã

σ2k, ∼ υkχ−2υk , with k = a, ã

ρ ∼ U (−1, 1)

Vector p and p̃ are assumed to be independent with distribution,(
p
p̃

)
| Gp ∼ N

((
0
0

)
, Gp ⊗ I

)
where I is the identity matrix with order equal to number of no genetic random effects and

Gp =

[
σ2p 0

0 σ2p̃

]
σ2p and σ2p̃ are the components of the variances due to no genetic random effects affecting the mean

and the residual variance models respectively.

σ2m ∼ υmχ−2υm , with m = p, p̃

To simplify let σ2i = exp(x̃iβ̃ + ziã+ w̃ip̃). So,

y
∣∣β, a, σ2i ∼ N (Xβ + Za+Wp, diag(σ2i )

)
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The number of elements in y is n (number of records) and in a is q (number of animals in the pedigree).
Posterior distribution is

(2)

p
(
β, a, σ2i , G,Gp | y

)
∝ p

(
y | β, a, σ2i , G,Gp

)
· p (a, ã | G) · p

(
σ2a
)
p
(
σ2ã
)
· p (ρ) p (p, p̃ | Gp) · p

(
σ2p
)
p
(
σ2p̃

)
p
(
β, a, σ2i , G,Gp | y

)
∝

{
n∏
i=1

(
σ2i
)− 1

2 exp

[
−(yi − x′iβ − z′ia− w′ip)

2

2σ2i

]}
· |2πA|−

1
2 |G|−

q
2

· exp

[
−1

2
(a, ã)

′ (
G−1 ⊗A−1

)
(a, ã)

]
·
(
σ2a
)−(υa2 +1)

exp

[
−υaSa

2σ2a

]
·
(
σ2ã
)−(

υã
2
+1)

exp

[
−υãSã

2σ2ã

]

· exp

[
−1

2
(p, p̃)

′ (
G−1p ⊗ I

)
(p, p̃)

] (
σ2p
)−(υp2 +1)

exp

[
−υpSp

2σ2p

]
·
(
σ2p̃

)−(υp̃
2
+1
)

exp

[
−
υp̃Sp̃
2σ2p̃

]
Introducing the one-to-one transformation(

γ
γ̃

)
= L−1 ⊗D−

1
2T−1

(
a
ã

)
(
a
ã

)
= L⊗ T D

1
2

(
γ
γ̃

)
where D is diagonal, T−1 is lower triangular and L is lower triangular in order of Cholesky decompo-
sition of G matrix.

G = L L
′

L =

[
σa 0

ρσã σã
√

1− ρ2

]
(
γ
γ̃

)
=

(
σaTD

1
2γ

ρσãTD
1
2γ + σã

√
1− ρ2TD

1
2 γ̃

)
where (

γ
γ̃

)
∼ N

((
0
0

)
, I2 ⊗ Iq

)
The sampling model of the data is now

p
(
y | β, γ, p, σ2i

)
∝

n∏
i=1

(
σ2i
)− 1

2 exp

−
(
yi − x′iβ − z′iσaTD

1
2γ − w′ip

)2
2σ2i


with l < β, β̃ < u, −1 < ρ < 1 and

σ2i = exp
(
x̃′iβ̃ + z′i

(
ρσãTD

1
2γ + σã

√
1− ρ2TD

1
2 γ̃
)

+ w̃′ip̃
)

The posterior density to be used to estimate the parameters is proportional to

(3) p
(
β, β̃, γ, γ̃, p, p̃, σ2a, σ

2
ã, ρ, σ

2
p, σ

2
p̃ | y

)
∝


n∏
i=1

(
σ2i
)− 1

2 exp

−
(
yi − x′iβ − z′iσaTD

1
2γ − w′ip

)2
2σ2i



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· exp

[
−1

2

(
γ

′
γ + γ̃

′
γ̃
)] (

σ2a
)−(υa2 +1)

exp

[
−υaSa

2σ2a

] (
σ2ã
)−(

υã
2
+1)

exp

[
−υãSã

2σ2ã

]

· exp

[
−1

2
(p, p̃)

′ (
G−1p ⊗ I

)
(p, p̃)

] (
σ2p
)−(υp2 +1)

exp

[
−υpSp

2σ2p

](
σ2p̃

)−(υp̃
2
+1
)

exp

[
−
υp̃Sp̃
2σ2p̃

]
For numerical convenience, it is usually easier to compute the maximum in the log posterior den-
sity. This maximum will coincide with the maximum in the posterior density. However, because the
calculation the log of the posterior density involves a summation rather than a product, there are
computational advantages to the use the log.
The log-posterior density is then given by

(4) ln p
(
β, β̃, γ, γ̃, σ2a, σ

2
ã, ρ, σ

2
p, σ

2
p̃ | y

)
= −

(υp
2

+ 1
)

lnσ2p −
(υp̃

2
+ 1
)

lnσ2p̃

−υpSp
2σ2p

−
υp̃Sp̃
2σ2p̃

−
(υa

2
+ 1
)

lnσ2a −
(υã

2
+ 1
)

lnσ2ã −
υaSa
2σ2a

− υãSã
2σ2ã

−1

2

(
p
′
p

σ2p̃
+
p̃
′
p̃

σ2p̃

)
− 1

2

(
γ

′
γ + γ̃

′
γ̃
)
− 1

2

n∑
i=1

lnσ2i −
n∑
i=1

1

2σ2i

(
yi − x′iβ − z′iσaTD

1
2γ − w′ip

)2
In next section is presented the way to obtain the estimated.

C.2 The MCMC algorithm
The model is fitted using the following algorithm:

• Gibbs update for β

• Langevin-Hastings proposal for β̃

• Langevin-Hastings proposal for γ, γ̃, p and p̃

• Normal random walk proposal for σ2a, σ
2
ã, ρ

C.2.1 Gibbs update for β
From standard theory,

β | β̃, γ, γ̃, p, p̃, σ2a, σ2ã, ρ, σ
2
p, σ

2
p̃, y ∼ N

β̂,( n∑
i=1

σ2i

)−1
where

β̂ =

(
n∑
i=1

σ2i

)−1( n∑
i=1

yiσ
2
i − 1

′
R−1Za

)

where R−1 is a n× n diagonal matrix with ith element equal to

σ−2i = exp
(
−x̃′iβ̃ − z′i

(
ρσãTD

1
2γ + σã

√
1− ρ2TD

1
2 γ̃
)
− w̃′ip̃

)
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C.2.2 Langevin-Hastings proposal for β̃
This algorithm requires

∂

∂β̃
ln p

(
β | β̃, γ, γ̃, p, p̃, σ2a, σ2ã, ρ, σ

2
p, σ

2
p̃, y
)

The conditional posterior distribution for β̃ is proportional to

(5) −1

2

n∑
i=1

lnσ2i −
n∑
i=1

1

2σ2i

(
yi − x′iβ − z′iσaTD

1
2γ − w′ip

)2
n∑
i=1

lnσ2i =
n∑
i=1

x̃′iβ̃ + ρσã

n∑
i=1

z′iTD
1
2γ + σã

√
1− ρ2

n∑
i=1

z′iTD
1
2 γ̃ +

n∑
i=1

w̃′ip̃

σ−2i = exp
(
−x̃′iβ̃ − z′i

(
ρσãTD

1
2γ + σã

√
1− ρ2TD

1
2 γ̃
)
− w̃′ip̃

)
Taking logarithms in (5) and keeping only terms in β̃ we obtain

∂

∂β̃
ln p

(
β | β̃, γ, γ̃, p, p̃, σ2a, σ2ã, ρ, σ

2
p, σ

2
p̃, y
)

= −n
2

+

n∑
i=1

(
yi − x′iβ − z′iσaTD

1
2γ − w′ip

)2
· exp

(
−x̃′iβ̃ − z′i

(
ρσãTD

1
2γ + σã

√
1− ρ2TD

1
2 γ̃
)
− w̃′ip̃

)
The mean of the proposal distribution for drawing at state t+ 1 is

(6)

[
β̃[t] − kn

4
+
k

2

n∑
i=1

1

2

(
yi − x′iβ − z′ia− w′ip

)2
exp

(
−x̃′iβ̃ − z′iã− w̃′ip̃

)]

Let Yβ and Y
β̃

the proposed values for β and β̃, so that

Y =
(
Yβ, Yβ̃

)
and the state of the chain at stage t be denoted by

Ht =
(
β[t], β̃[t]

)
= h

Then from (5)

lnπ (Y ) = −1

2

n∑
i=1

lnY σ2i −
n∑
i=1

1

2Y σ2i

(
yi − x′iβ − z′iσaTD

1
2γ − w′ip

)2
where

n∑
i=1

lnY σ2i = nY
β̃

+ ρσã

n∑
i=1

z′iTD
1
2γ + σã

√
1− ρ2

n∑
i=1

z′iTD
1
2 γ̃ + w̃′ip̃

and
Y σ2i = exp

(
Y
β̃

+ z′i

(
ρσãTD

1
2γ + σã

√
1− ρ2TD

1
2 γ̃
)

+ w̃′ip̃
)

lnπ (h) = −1

2

n∑
i=1

lnσ2i −
n∑
i=1

1

2σ2i

(
yi − x′iβ − z′iσaTD

1
2γ − w′ip

)2
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where
n∑
i=1

lnσ2i =
n∑
i=1

x̃′iβ̃ + ρσã

n∑
i=1

z′iTD
1
2γ + σã

√
1− ρ2

n∑
i=1

z′iTD
1
2 γ̃ +

n∑
i=1

w̃′ip̃

and

σ2i = exp
(
x̃′iβ̃ + z′i

(
ρσãTD

1
2γ + σã

√
1− ρ2TD

1
2 γ̃
)

+ w̃′ip̃
)

Then we have

q (Yβ;h) = exp

−1

2

(
β̃[t] − Y

β̃
−

(
kn

4
− k

4

n∑
i=1

(
yi − x′iβ − z′ia− w′ip

)2
exp

(
−x̃′iβ̃t − z′iã− w̃′ip̃

)))2


where k is a user-specified proposal variance.
Similarly

q(h;Y ) = q(h;Y
β̃
)

These expressions are used to compute the acceptance ratio:

(7) αj(h;Y ) =

{
π(Y )qj(Y ;hj)

π(h)qj(h;Yj)

}

C.2.3 Langevin-Hastings proposal for γ, γ̃
This algorithm requires

(8)
∂

∂γ
ln p

(
γ, γ̃

∣∣∣β, β̃, p, p̃, σ2a, σ2ã, ρ, σ2p, σ2p̃, y)
∂

∂γ̃
ln p

(
γ, γ̃

∣∣∣β, β̃, p, p̃, σ2a, σ2ã, ρ, σ2p, σ2p̃, y)
Taking equation (4) and keeping only terms in γ, γ̃ we obtain

ln p
(
γ, γ̃

∣∣∣β, β̃, σ2a, σ2ã, p, p̃, ρ, σ2p, σ2p̃, y) ∝ −1

2

(
γ

′
γ + γ̃

′
γ̃
)

−1

2

n∑
i=1

lnσ2i −
n∑
i=1

1

2

(
yi − x′iβ − z′iσaTD

1
2γ − w′ip

)2
Differentiating with respect to γ, γ̃ we obtain:

∂

∂γ
ln p

(
γ, γ̃

∣∣∣β, β̃, σ2a, σ2ã, p, p̃, ρ, σ2p, σ2p̃, y) = −γ − 1

2
ρσã

n∑
i=1

D
1
2T

′
zi

+σa

n∑
i=1

D
1
2T

′
zi

(
yi − x′iβ − z′iσaTD

1
2γ − w′ip

)
exp

(
−x̃′iβ̃ − ρσãz′iTD

1
2γ − σã

√
1− ρ2z′iTD

1
2 γ̃ − w̃′ip̃

)

+ρσã

n∑
i=1

D
1
2T

′
zi

1

2
exp

(
−x̃′iβ̃ − ρσãz′iTD

1
2γ − σã

√
1− ρ2TD

1
2 γ̃ − w̃′ip̃

)(
yi − x′iβ − z′iσaTD

1
2γ − w′ip

)2
to oversimplify the computation
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∂

∂γ
ln p

(
γ, γ̃

∣∣∣β, β̃, σ2a, σ2ã, p, p̃, ρ, σ2p, σ2p̃, y) = −γ +
n∑
i=1

D
1
2T

′
zi·

(
−1

2
ρσã + σa

(
yi − x′iβ − z′ia− w′ip

)
exp

(
−x̃′iβ̃ − z′iã− w̃′ip̃

)
+

1

2
ρσã exp

(
−x̃′iβ̃ − z′iã− w̃′ip̃

) (
yi − x′iβ − z′ia− w′ip

)2)
Call now

W1 =
n∑
i=1

zi

(
−1

2
ρσã +

1

2
ρσã exp

(
−x̃′iβ̃ − z′iã− w̃′ip̃

) (
yi − x′iβ − z′ia− w′ip

)2
+σa

(
yi − x′iβ − z′ia− w′ip

)
exp

(
−x̃′iβ̃ − z′iã− w̃′ip̃

))
a simple computational strategy for obtain T

′
W1 = W ∗1 is the following. Write

T−1 (TW1) = W1

∂

∂γ
ln p

(
γ, γ̃

∣∣∣β, β̃, p, p̃, σ2a, σ2ã, ρ, σ2p, σ2p̃, y) = −γ +D
1
2W ∗1

Differentiating with respect to γ̃ gives

∂

∂γ̃
ln p

(
γ, γ̃

∣∣∣β, β̃, p, p̃, σ2a, σ2ã, ρ, σ2p, σ2p̃, y) = −γ̃ − σã
√

1− ρ2
2

n∑
i=1

D
1
2T

′
zi·

+σã
√

1− ρ2
n∑
i=1

D
1
2T

′
zi

(
1

2

(
yi − x′iβ − σaz′iTD

1
2γ − w′ip

)2
exp

(
−x̃′iβ̃ − ρσãz′iTD

1
2γ + σã

√
1− ρ2z′iTD

1
2 γ̃ − w̃′ip̃

))
to oversimplify the computation, we can also write

W2 =

n∑
i=1

zi

(
−σã

√
1− ρ2
2

+
σã
√

1− ρ2
2

(
yi − x′iβ − z′ia− w′ip

)2
exp

(
−x̃′iβ̃ − z′iã− w̃′ip̃

))

Let call W ∗2 = T
′
W2. So,

T−1 (TW2) = W2

∂

∂γ̃
ln p

(
γ, γ̃

∣∣∣β, β̃, p, p̃, σ2a, σ2ã, ρ, σ2p, σ2p̃, y) = −γ̃ +D
1
2W ∗2

The mean of the proposal distribution for drawing at state t+ 1 is γ(t) + k
2

(
D

1
2W ∗1 − γ(t)

)
γ̃(t) + k

2

(
D

1
2W ∗2 − γ̃(t)

) 
Remark 6 Langevin Hastings proposal for p and p̃ are computed in the same way as for γ and γ̃.
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C.2.4 Normal random walk proposal for σa, σã,σp, σp̃ and ρ
Joint updating of lnσa and lnσã using Metroplis-Hastings algorithm can be implemented as follows.
Let Yσ2

a
, Yσ2

ã
and Yρ the proposed values generated from the two dimensional normal distribution

N (m, Ik) centered at the previous realizations lnσ2a, lnσ2ã, ρ; that is, m =
(
lnσ2a, lnσ

2
ã, ρ
)
. Matrix I

is the identity of dimension 3 ⊗ 3 and k is a user supplied turning scalar. Thus lnYσ2
a

is generated
from

q lnσ2a = (2πk)−
1
2 exp

[
−
(
lnY

σ2a
−lnσ2

a

)2
2k

]
1
Y
σ2a

q lnσ2ã = (2πk)−
1
2 exp

−
(
lnY

σ2
ã
−lnσ2

ã

)2

2k

 1
Y
σ2
ã

qρ = (2πk)−
1
2 exp

[
− (Y ρ−ρ)2

2k

]
The acceptance ratio involves the density of the proposal distribution for lnσa and lnσã, ρ given by

q lnσ2a, q lnσ2ã, qρ as well as all terms in equation (3) except exp
[
−1

2

(
γ

′
γ + γ̃

′
γ̃
)]

Remark 7 Normal random walk proposal for σ2p and σ2p̃ are obtained in the same way as for σ2a and

σ2ã.
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