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1. Linkage disequilibrium in livestock populations

1.1 A brief history of QTL mapping
The vast majority of economically important trarndivestock and aquaculture

production systems are quantitative, that is thmwscontinuous distributions. In
attempting to explain the genetic variation obseénvesuch traits, two models have
been proposed, the infinitesimal model and thedildci model. Thénfinitesimal
modelassumes that traits are determined by an infiniteber of unlinked and
additive loci, each with an infinitesimally smaffext (Fischer 1918). This model has
been exceptionally valuable for animal breedingl, famms the basis for breeding

value estimation theory (eg Henderson 1984).

However, the existence of a finite amount of geradty inherited material (the
genome) and the revelation that there are perhégalaof only around 20 000 genes
or loci in the genome (Ewing and Green 2000), mdlaaisthere is must be some
finite number of locunderlying the variation in quantitative traitis. fact there is
increasing evidence that the distribution of tHe@fof these loci on quantitative
traits is such that there are a few genes witrelaftect, and a many of small effect
(Shrimpton and Robertson 1998, Hayes and Godddd)20n Figure 1.1, the size of
guantitative trait loci (QTL) reported in QTL mappgi experiments in both pigs and
dairy cattle is shown. These histograms are retrtie distribution of QTL effects
however, they are only able to observe effects alaovertain size determined by the
amount of environmental noise, and the effecteatienated with error. In Figure
1.1. B, the distribution of effects adjusted fottbthese factors is displayed. The
distributions in Figure 1.1 B indicate there arenjngenes of small effect, and few of
large effect. The search for these loci, partidylnose of moderate to large effect,
and the use of this information to increase theiamy of selecting genetically
superior animals, has been the motivation for sitenresearch efforts in the last two
decades. Note that in this coues®/locus with an effect on the quantitative traiais

called a QTL, not just the loci of large effect.
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Figure 1.1 A. Distribution of additive (QTL) effects from pig experiments,
scaled by the standard deviation of the relevant &it, and distribution of gene
substitution (QTL) effects from dairy experiments €aled by the standard
deviation of the relevant trait. B. Gamma Distribution of QTL effect from pig

and dairy experiments, fitted with maximum likelihood.

Two approaches have been used to uncover QTL.cdindidate gene approach
assumes that a gene involved in the physiologhetrait could harbour a mutation
causing variation in that trait. The gene, or paftthe gene, are sequenced in a
number of different animals, and any variationghie DNA sequences, that are found,
are tested for association with variation in therpitypic trait. This approach has had
some successes — for example a mutation was digtbirethe oestrogen receptor
locus ESR which results in increased litter size in pig®{fschild et al. 1991). For

a review of mutations which have been discoverathirdidate genes see Andersson
and Georges (2004). There are two problems wélt#mdidate gene approach,
however. Firstly, there are usually a large nundd@andidate genes affecting a trait,
SO many genes must be sequenced in several aranthlmany association studies
carried out in a large sample of animals (the iilad that the mutation may occur in
non-coding DNA further increases the amount of seging required and the cost).
Secondly, the causative mutation may lie in a geaewould not have been regarded

a priori as an obvious candidate for this particular trait.

An alternative is the QTL mapping approach, in mietbromosome regions
associated with variation in phenotypic traits identified. QTL mapping assumes

the actual genes which affect a quantitative &netnot known. Instead, this approach



uses neutral DNA markers and looks for associati@taeen allele variation at the
marker and variation in quantitative traits. A DM#arker is an identifiable physical
location on a chromosonvehose inheritance can be monitored. Markers can be
expressed regions of DN@enes) or more often some segment of DNA with no
known coding function but whose pattern of inherita can be determined
(Hyperdictionary, 2003).

When DNA markers are available, they can be usegtermine if variation at the
molecular level (allelic variation at marker lotdag the linkage map) is linked to
variation in the quantitative trait. If this isetltase, then the marker is linked to, or on
the same chromosome as, a quantitative trait loc@TL which has allelic variants

causing variation in the quantitative trait.

Until recently, the number of DNA markers identifi livestock genome was
comparatively limited, and the cost of genotyping markers was high. This
constrained experiments designed to detect QTlsitoyua linkage mapping

approach. If a limited number of markers per ctosame are available, then the
association between the markers and the QTL wilipeonly within families and

only for a limited number of generations, due tworabination. For example in one
sire, theA allele at a particular marker may be associatel thie increasing allele of
the QTL, while in another sire, tlzeallele at the same marker may be associated with
the increasing allele at the QTL, due to historreabmbination between the marker

and the QTL in the ancestors of the two sires.

To illustrate the principle of QTL mapping exploi linkage, consider an example
where a particular sire has a large number of prpgehe parent and the progeny are
genotyped for a particular marker. At this markke sire carries the marker alleles
172 and 184, Figure 1.2. The progeny can then tiedsmto two groups, those that
receive allele 172 and those that receive allefefid@n the parent. If there is a
significant difference between the two groups afgany, then this is evidence that
there is a QTL linked to that marker.
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Figure 1.2. Principle of quantitative trait loci (QTL) detection, illustrated using
an abalone example. A sire is heterozygous for aamker locus, and carries the
alleles 172 and 184 at this locus. The sire hasaage number of progeny. The
progeny are separated into two groups, those thaeceive allele 172 and those
that receive allele 184. The significant differencan the trait of average size
between the two groups of progeny indicates a QTlinked to the marker. In
this case, the QTL allele increasing size is linket the 172 allele and the QTL
allele decreasing size is linked to the 184 allgleigure courtesy of Nick

Robinson).

QTL mapping exploiting linkage has been performredli nearly livestock species
for a huge range of traits (for a review see Anslemsand Georges 2004). The
problem with mapping QTL exploiting linkage is thahless a huge number of
progeny per family or half sib family are used, @€L are mapped to very large
confidence intervals on the chromosome. To ilatstthis, consider the formula that
Darvasi and Soller (1997) gave for estimating th&3CI for QTL location for simple
QTL mapping designs under the assumption of a tiggisity genetic map. The
formula wasCI=3000/(kN&), whereN is the number of individuals genotypeH,
allele substitution effect (the effect of gettingextra copy of the increasing QTL
allele) in units of the residual standard deviatlotihe number of informative parents

per individual, which is equal 1 for half-sibs amackcross designs and 2 for F



progeny, and 3000 is about the size of the catteme in centi-Morgans. For
example, given a QTL segregates on a particulammsbsome within a half sib family
of 1000 individuals, for a QTL with an allele suhgion effect of 0.5 residual
standard deviations the 95% CI would be 12 cM. hSarge confidence intervals
have two problems. Firstly if the aim of the QTlapping experiment is to identify
the mutation underlying the QTL effect, in a sudarge interval there are a large
number of genes to be investigated (80 on averdihe2® 000 genes and a genome of
3000cM). Secondly, use of the QTL in marker assdistlection is complicated by
the fact that the linkage between the markers ahid iQ not sufficiently close to
ensure that marker-QTL allele relationships peesisbss the population, rather
marker-QTL phase within each family must be esshleld to implement marker
assisted selection.

An alternative, if dense markers were availableyidde to exploit linkage
disequilibrium (LD) to map QTL. Performing expeents to map QTL in genome
wide scans using LD has recently become possil@daalthe availability of 10s of
thousands of single nucleotide polymorphism (SNkera) in cattle, pigs, chickens
and sheep in the near future (eg.
(ftp://ftp.hgsc.bcm.tmc.edu/pub/data/Btaurus/snpiB@H40927/bovine-snp.ixt A
SNP marker is a difference in nucleotide betweemals (or an animals pair of

chromosomes), at a defined position in the gen@ge,
Animal 1. ACTCGGGC
Animal 2. ACTIGGGC
Rapid developments in SNP genotyping technology albow genotyping of a SNP

marker in an individual for as little as 1c US.

1.2 Definitions and measures of linkage disequilibr ium.

The classical definition of linkage disequilibriyiirD) refers to the non-random
association of alleles between two loci. Constder markers, A and B, that are on
the same chromosome. A has alleles A1l and A2Bdmak alleles B1 and B2. Four
haplotypes of markers are possible A1_B1, A1 _B2,BRand A2_B2. If the

frequencies of alleles Al, A2, B1 and B2 in the yapion are all 0.5, then we would



expect the frequencies of each of the four hapstyp the population to be 0.25.
Any deviation of the haplotype frequencies fromBdiflinkage disequilibrium (LD),
ie the genes are not in random association. Assale, this definition serves to
illustrate that the distinction between linkage #inkage disequilibrium mapping is
somewhat artificial — in fact linkage disequilibmubetween a marker and a QTL is

required if the QTL is to be detected in eithett ®branalysis. The difference is:

linkage analysi®nly considers the linkage disequilibrium thatsexiwithin
families, which can extend for 10s of cM, and isken down by

recombination after only a few generations.

linkage disequilibriummapping requires a marker to be in LD with a QTL
across the entire population. To be a properth@fwhole population, the
association must have persisted for a consideralstéber of generations, so
the marker(s) and QTL must therefore be closekekh

One measure of LD B, calculated as (Hill 1981)
D = freq(Al_B1l)*freq(A2_B2)-freq(Al_B2)*freq(A2_B1)

where freq (A1_B1) is the frequency of the A1_Bblbéype in the population, and
likewise for the other haplotypes. TBestatistic is very dependent on the frequencies
of the individual alleles, and so is not particlyarseful for comparing the extent of
LD among multiple pairs of loci (eg. at differergipts along the genome). Hill and
Robertson (1968) proposed a statisficyshich was less dependent on allele
frequencies,

2 - D2

freq(Al) * freq(A2) * freq(BL) * freq(B2)

Where freq(Al) is the frequency of the Al allelehe population, and likewise for
the other alleles in the population. Values’ainge from 0, for a pair of loci with no
linkage disequilibrium between them, to 1 for ardiloci in complete LD.

As an example, consider a situation where theealteljuencies are



freq(Al) = freq(A2) = freq (B1) = freq (B2) = 0.5

The haplotype frequencies are:

freq(A1_B1)=0.1

freq(A1_B2)=0.4

freq(A2_B1)=0.4

freq(A2_B2) =0.1

TheD =0.1*0.1-0.4*0.4 = -0.15

And D* = 0.0225.

The value of Tis then 0.0225/(0.5*0.5*0.5*0.5) = 0.36. Thisaisnoderate level of

r.

Another commonly used pair-wise measure of LD igll2wontin 1964). To

calculate D’, the value of D is standardized byrieximum value it can obtain:

D'= [D}/Dinax

Where Dha= min[freq(Al)*freq(B2), -1*freq(A2)*freq(B1)] if B>0, else
= min[freq(Al)*freq(B1),--1*freq(A2)*freq*B2)] if D<O.

The statistic Tis preferred over D’ as a measure of the extehDofor two reasons.
If we consider the’rbetween a marker and an (unobserved) @¥ls the proportion
of variation caused by the alleles at a QTL whilexplained by the markerghe
decline in f with distance actually indicates how many markerphenotypes are
required in initial genome scan exploiting LD aeguired to detect QTL.
Specifically, sample size must be increased by®faf 1/f to detect an
ungenotyped QTL, compared with the sample sizéefting the QTL itself
(Pritchard and Przeworski 2001). D’ on the othendhdoes a rather poor job of
predicting required marker density for a genome soaloiting LD, as we shall see
in Section 2. The second reason for usfn@ther than D’ to measure the extent of
LD is that D’ tends to be inflated with small samgizes or at low allele frequencies
(McRae et al. 2002).



The above measures of LD are for bi-allelic markékhile they can be extended to

multi-allelic markers such as microsatellites, Zleaal. (2005) recommended the

x? measure of LD for multi-allelic markers, where

» 1 k m D|12
X =i Z;; freq(A ) freq(B,)

and D; = freq(A _B,) - freq(A) freq(B,) , freq(A) is the frequency of thi& allele

at marker Afreq(B) is the frequency of thid allele at marker B, arlds the

minimum of the number of alleles at marker A andkaaB. Note that for bi-allelic

markers, y* =r?.

Their investigations using simulation showed oua ofumber of multi-allelic pair-

wise measures of LDy” was the best predictor of useable marker-QTL LD (eg

proportion of QTL variance explained by the marker)

While pair-wise measures of LD are important andebly used, are not particularly
illuminating with respect to the causes of LD. Eaample, statistics such &s r
consider only two loci at a time, whereas we masiwvio calculate the extent of LD
across a chromosome segment that contains muttipiiers. An alternate multi-
locus definition of LD is thehromosome segment homozygositfSH) (Hayes et
al. 2003). Consider an ancestral animal many g¢ioas ago, with descendants in
the current population. Each generation, the aoceshromosome is broken down,
until only small regions of chromosome which trbeek to the common ancestor
remain. These chromosome regions are identicdebgent (IBD). Figure 1.3
demonstrates this concept.

The CSH then is the probability that two chromos@®gments of the same size and
location drawn at random from the population aoenfa common ancestor (ie IBD),
without intervening recombination. CSH is defifeda specific chromosome
segment, up to the full length of the chromosorfike CSH cannot be directly
observed from marker data but has to be inferreah imarker haplotypes for
segments of the chromosome. Consider a segmehtahosome with marker locus
A at the left hand end of the segment and marlerd® at the other end of the

10



segment (as in the classical definition above)e adlteles at A and B define a

haplotype. Two such segments are chosen at ranagomtfie population. The

probability that the two haplotypes are identicakkate (IBS) is the haplotype

homozygosity (HH). The two haplotypes can be IB8no ways,

I. The two segments are descended from a common aneestout intervening
recombination, so are identical by descent (IBD), o

il. the two haplotypes are identical by state but Bat |

The probability of i. is CSH. The probability of is a function of the marker

homozygosities, given the segment is not IBD. piobabilities of i. and ii. are

added together to give the haplotype homozygokity)(

(Hom, —CSH)(Hom, - CSH)
1-CSH

HH =CSH+

Where Hom and Homg are the individual marker homozygosities of marvkemnd
marker B. This equation can be solved for CSH wtherhaplotype homozygosities
and individual marker homozygosities are observenhfthe data. For more than two
markers, the predicted haplotype homozygosity @odiculated in an analogous but

more complex manner.

1,
2 - 2.\‘
I I
2 — 2 i
v 3 v

Figure 1.3 An ancestor many generations ago (1) ke@s descendants (2). Each
generation, the ancestors chromosome is broken doviay recombination, until
all that remains in the current generation are smdlconserved segments of the
ancestor’'s chromosome (3). The chromosome segméwimozygosity (CSH) is
the probability that two chromosome segments of theame size and location

drawn at random from the population are from a comnon ancestor.
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Another justification for using multi-locus meassi@ LD is that they can be less
variable than pair-wise measures. The variatidrDrarises from two sampling
processes (Weand Hill 1980). The first sampling process refldbis samplingf
gametes to form successive generations, and isxdeptn finite population size.

The second sampling process isgampling of individuals to be genotyped from the
populationand is dependent on the sample sizeT he first sampling process
contributes to the high variability of LD measurdgdarker pairs at different points in
the genome, but a similar distance apart, can temedifferent f values, particularly

if the marker distance is small, Figure 1.4. Tikibecause by chance there may have
been an ancestral recombination between one pawadiers, but not the other.

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000 10000000
Distance (bp)

Figure 1.4. P values against distance in bases between pairsroérkers from 0
000 genome wide SNPs genotyped in a population obldtein Friesian cattle.

1000000 bases is approximately 1cM.

Multi-locus measures of LD can have reduced vditgiiecause they accumulate
information across multiple loci in an intervaluthaveraging some of the effects of
chance recombinations. Hayes et al. (2003) ingattil the variability offrand CSH
using simulation. They simulated a chromosome sagofh 10 cM containing 11

markers was simulated with a mutation-dmfbdel, with a constamd of 1000. They

12



found CSH was less variable thamprovided at least four loci were included in the

calculation of CSH, Figure 1.5.
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Figure 1.5 Coefficient of variation ofr? and CSH in a simulated populations, over

haplotype regions of the same length, across 20(pfieates. There one marker
per 0.01M (Hayes et al. 2003).

1.3 Causes of linkage disequilibrium in livestock p opulations

LD can arise due to migration, mutation, selectsmall finite population size or
other genetic events which the population expedsijeg. Lander and Schork 1994).
LD can also be deliberately created in livestocgipations; in an F2 QTL mapping
experiment LD is created between marker and QTeleslby crossing two inbred

lines.

In livestock populations, finite population sizegisnerally implicated as the key
cause of LD. This is because
- effective population sizes for most livestock p@tigns are relatively small,
generating relatively large amounts of LD
- LD due to crossbreeding (migration) is large whessing inbred lines but

small when crossing breeds that do not differ aketly in gene frequencies,

13



and it disappears after only a limited number ofegations (eg. Goddard
1991)

- mutations are likely to have occurred many genenatago.

- while selection is probably a very important caaSED, it's effect is likely to
be localised around specific genes, and so hasvedialittle effect on the
amount of LD ‘averaged’ over the genome. The uddébomeasures to detect

selected areas of the genome will be discussetiybinesection 1.8.

1.3.1 Predicting the extent of LD with finite population size
If we accept finite population size as the key drigf LD in livestock populations, it

is possible to derive a simple expectation forahmunt of LD for a given size of
chromosome segment. This expectation is (Sved)1971
E(r?) =1/(4Nc+1)

whereN is the finite population size, amds the length of the chromosome segment
in Morgans. The CSH has the same expectation @etyal. 2003). This equation
predicts rapid decline in LD as genetic distan@eaases, and this decrease will be
larger with large effective population sizes, Fegir6.

035
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0.15 \

Linkage disequilibirum (CSH)

0.11 ~ o
A—
A—
) -\-\'\HH—.‘.R:X
0 T T T T '
0 1 2 3 4 5

Length of chromosome segment (cM)

Figure 1.6. The extent of LD (as measured by chrorsome segment
homozygosity, CSH) for increasing chromosome segmdength, for Ne=100 and
Ne=1000. Note that f has the same expectation as CSH.

As the extent of LD that is observed depends botheoent and historical
recombinations, not only the current effective dapan size, but also the past
effective population size are important. Effectpapulation size for livestock species

may have been much larger in the past than theipdeasy. For example in dairy

14



cattle the widespread use of artificial inseminatimd a few elite sires has greatly
reduced effective population size in the recent.pashumans, the story is the
opposite; improved agricultural productivity andlustrialisation have led to dramatic
increases in population size. How does changimulation size affect the extent of
LD? To investigate this, we simulated a populatidmnch either expanded or
contracted after a 6000 generation period of stgbiThe LD, as measured by CSH,
was measured for different lengths of chromosorgenset, Figure 1.7. Results f6r r

would look very similar.

025 0.8
% 4 CSH ¢ CSH

— E(CSH) if N=1000 074 - E(CSH) f N=100
-~ E(CSH) if N=5000 — E(CSH) f N=1000

0.15

Chromosome segment homaozygosity
o
=

005 1. i‘

Chromosome Segment Homozygosity (CSH)

0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 01
Length of haplotype (M) Length of haplotype (M)

A B

Figure 1.7. Chromosomal homozygosity for differentengths of chromosome
(given the recombination rate) for populations: A. Linearly increasing
population size, from N=1000 to N=5000 over 100 gerations, following 6000
generations at N=1000. B. Linearly decreasing pafation size, from N=1000 to

N=100 over 100 generations, following 6000 generatis at N=1000.

The conclusion is that LD at short distances isrection of effective population size
many generations ago, while LD at long distanc#eats more recent population
history. In fact, provided simplifying assumptiosisch as linear change in population
size are made, it can be shown that fher ICSH reflects the effective population size
1/(2c) generations ago, where c is the length@ttiromosome segment in Morgans.

So the expectation for r2 with changing effectiepyplation size can be written as

E(r?) =1/(4N,c+1) wheret =1/2c.
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1.4 The extent of LD in livestock and human populat  ions

If LD is a predominantly result of finite populatisize, then the extent of LD should
be less in humans than in cattle, as in humanseftbetive population size is ~ 10000
(Kruglyak 1999) whereas in livestock where effeetpopulation sizes can be as low
as 100 (Riquet et al. 1999). The picture is sonswbmplicated by the fact that
livestock populations have been very much largéilenthe Caucasian effective
population size has been very much smaller (folhgathe out of Africa hypothesis).
So what we could expect to see is that at longudecsts between markers, the r

values in livestock are much larger than in humasle at short distances, the level

of LD is more similar. This is in fact what is @ged. Moderate LD (eg.” = 0.2in
humans typically extends less than 5kb (~0.005cMpending on the population
studied (Dunning et al. 2000, Reich et al. 200€Ba et al. 2007), Figure 1.8. In

cattle moderate LD extends up to 100kb, Figure H8wever, very high levels of

LD (eg. r? = 0.8only extend very short distances in both humanscatite.

It is interesting to compare the extent of LD ie thifferent cattle populations. The
Dutch and Australian Holstein populations had g \&milar decline of LD, probably
because these populations are highly related @uget et al. 2007) and are similar in
effective population size and history. The decbhéD in the Norwegian Reds was
more rapid than in the Holstein populations. Oxgamnation for this could be that
the effective population size in Norwegian Redighbr than in Holstein, even
though the global population is much smaller. &ifee population size in Norwegian
Reds is approximately 400 (Meuwissen et al. 20@B)le for the global Holstein
population effective population size is close t@ {Benger et al 2007), and a more

limited extent of LD is expected with larger effi@et population size.
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Figure 1.8. A. Average f with distance in Caucasian humans (from Tenesa et
al. 2007). 1cM is approximately 1000kb. B. Avere r* value according to the
distance between SNP markers in different cattle gmulations. Results are from
9918 SNPs distributed across the genome genotyp@&d384 Holstein cattle or 384
Angus cattle, 403 SNPs genotyped in 783 Norwegiardcattle, 3072 SNPs
genotyped in 2430 Dutch Holstein cattle, or 351 S¥Rjenotyped in Jersey cattle.
Norwegian red data kindly supplied by Prof. Sigbjon Lien, Norwegian
University of Life Sciences, New Zealand Jersey dakindly supplied by Dr.

Richard Spelman, Livestock Improvement Co-operative
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Figure 1.8 implies that for the Holstein populatat least, there must be a marker
approximately every 100kb (kilo bases) or lesscliieve an averagé of 0.2. This
level of LD between markers and QTL would allowesngme wide association study
of reasonable size to detect QTL of moderate eff@stthe bovine genome is
approximately 3,000,000kb, this implies that inesrdf 30,000 evenly spaced
markers are necessary in order that every QTLargdnome can be captured in a
genome scan using LD to detect QTL. In Jerseyd\ammdiegian Reds, a larger

number of markers would be required.

Du et al. (2007) assessed the extent of LD in pgysg 4500 SNP markers genotyped
in six lines of commercial pigs. Only maternal ledypes of the commercial pigs
were used to evaluatélretween the SNPs, as the paternal haplotypesavere
represented in the population. The results frosir study indicate there may be
considerably more LD in pigs than in cattle. FOIFS separate by 1cM, the average
value of f was approximately of 0.2. LD of this magnituddyoextends 100kb in
cattle. In pigs at a 100kb the average:as 0.371.

Heifetz et al. (2005) evaluated the extent of L@ inumber of populations of
breeding chickens. They used microsatellite marked evaluated the extent of LD

with the y? statistic. In their populations, they found sigedht LD extended long

distances. For example 57% of marker pairs segitat 5-10cM had ay” = 0.2in

one line of chickens and 28% in the other. Hei&dtal. (2005) pointed out that the
lines they investigated had relatively small effieepopulation sizes and were partly
inbred, so the extent of LD in other chicken popales with larger effective
population sizes may be substantially different.

McRae et al. (2002) evaluated the extent of LDamdstic sheep. They used the D’
parameter rather thafy so comparison with results for other speciesrgivere is
difficult. They found that high levels of LD extéed fortens of centimorgans and
declined with increasing marker distance. Thegp #i®roughly investigated bias in

D’ under different conditions, and found tlistmay be skewed when rare alleles are
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present. They therefore recommentted the statistical significance of LD is used in

conjunctiorwith coefficients such a3' to determine the true extentldd.

1.5 Extent of LD between populations and breeds.
Marker assisted selection exploiting LD relies loa phase of LD between markers

and QTL being the same in the selection candidetes the reference population
where the QTL marker associations were detectemveier as the reference
population and the population in which MAS is apdlbecome more and more
diverged, for example different breeds, the phadess and less likely to be
conserved. The statistic r is a measure for Lvbeh two markers in a population,
but can also be used to measure the persistertbe bD phases between
populations. While thef statistic between two SNP markers at the samardistin
different breeds or populations can be the samesvaben if the phases of the
haplotypes are reversed, they will only have theesgalue and sign for the r statistic
if the phase is the same in both breeds or populsiti For marker pairs of a given
distance, the correlation between r in two popaitadj corr(rl,r2), is equal to the
correlation of the effects of the marker betweethpmpulations, for markers that
have that same distance to a QTL (De Roos et @IF)20f this correlation is 1, the
marker effects are equal in both populationshil torrelation is zero, a marker in
population 1 is useless in population 2. A highrelation between r values means
that the marker effect persists across the pojpulgti Calculating the correlation of r
values across different breeds and populations asdecator of how far the same
marker phase is likely to persist between thesedsrand populations (Goddard et al.
2006). This information can in turn be used toegiw indication of marker density
required to ensure marker-QTL phase persists apayasations and or breeds, which
would be necessary for the application LD-MAS on@aic selection using the same
marker set and SNP effects across the breeds aigimps.

In Figure 1.9, the correlation of r values is gifena number of different cattle
populations. The correlation of r values for DuRéd-and-white bulls and Dutch
Black-and-white bulls was 0.9 at 30kb. This intlisaat this distancé is high in

both populations and the sign of r is the samepth populations, so the LD phase is

the same in both populations. If one of these SMigsactually an unknown mutation
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affecting a quantitative trait, the other SNP cdutdused in MAS and the favourable
SNP allele would be the same in both breeds. tstein and Angus breeds, the
correlation of r is above 0.9 only at 10kb or leBsr Australian Holsteins and Dutch
Holsteins, the correlation of r values was abo@up. to 100kb, reflecting the fact

that there are common bulls used in the two pojauiat(eg. Zenger et al. 2007).

—&— Australian Holstein, Australian Angus
0.9 |\ A~ N —&— Dutch black and white bulls 95-97, Dutch red and white bulls
S~ - - - Dutch black and white bulls 95-97, Australian Holstein bulls
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Figure 1.9. Correlation between r values for varias cattle populations or sub-

populations, as a function of marker distance (fronDe Roos et al. 2007).

1.6 Optional topic 1. Brief note on haplotyping st  rategies

Calculations of LD parameters likeand CSH assume that the genotypes of
individuals can be phased into haplotypes (ie. wimarker alleles belong on the
paternally inherited chromosome and which marketed belong on the maternally
inherited chromosome). If large half sib familag available, the sires haplotypes
can fairly readily be reconstructed by determinvigch alleles are most often co-
inherited from the sire. The haplotypes whichdaen passed on the to the progen)

~

can then be inferred by ‘subtracting’ the allelemsmitted from the sire from the

progeny genotypes. Inferring haplotypes become® miifficult in complex
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pedigrees, with missing marker information, or whiggre is very little pedigree

information at all.

One method of inferring haplotypes in complex pegkg is to run Markov Chain
on a set ofenetic descent graph#\ genetic descent graph specifies the paths of

gene flow (parents to offspring), but not the mauttar founder alleles travelling dow

-

the paths. See Sobel and Lange (1996) for moeglslen this procedure. This
method is implemented in a freeware program c&lieaWalk

(http://www.genetics.ucla.edu/software/simwalk doc/

In some cases, the individuals that are genotypegba randomly sampled from the
population, with no pedigree information availabRrovided the markers which haye
been genotyped are closely spaced, it can be possibstimate haplotypes based on
linkage disequilibrium and allele frequency infotioa alone. One such method was
proposed by Stephens et al. (2001). Suppose wedaample af diploid
individuals from a population (these individuals assumed to be unrelated). Let G
= (Gy,....Gy) denote the (known) genotyped for the individubdsH = (H,,...,Hn)

denote the (unknown) corresponding haplotype pkit$; = (F,....,Fv) denote the
set of unknown population haplotype frequencied, lanf = (f,....,fu) denote the set
of unknown sample haplotype frequencies (the M iptssaplotypes are labelled
1,...,M). The haplotype reconstruction method ofpfans et al. (2001) regards the
unknown haplotypes as unobserved random quardaitiésaims to evaluate their
conditional distribution in light of the genotypatd. To do this, they used MCMC, [to
obtain an approximate sample from the posteridridigion of H given G, eg.

Pr(H|G). The steps in the algorithm are:

1. Start with an initial guess for H (the hapfmypairs of all individuals), &
This begins by listing all haplotypes that muspbesent unambiguously in the
sample, that is those individuals who are homozgguevery locus or are

heterozygous at only one locus. For the othewiddals, who have ambiguous

haplotypes, the haplotypes can be allocated abrarftbom the genotypes.

2. Choose an individual, i, at random from a#l #tmbiguous genotypes. Samp

t+1
i

the haplotypes for this individual for the nexr#igon (H. ™). These haplotypes are|
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sampled from a distribution which assumes thaht@otypes in the haplotype pair
H; are likely to look eitheexactly the samer similar to a haplotype that has already
been observed. This assumption is based on teerge of both LD and mutation -
if the chromosome segment carrying the haplotypssiort enough, there will be

considerable LD, greatly restricting the numbehaplotypes. New haplotypes can
be generated either by recombination or mutatianatof the markers. Formally, tl
distribution from which the new haplotypes are skauijs:

Vet 8
n(mH)-zz—[Hej e

a=1s0 I

wherer, is the number of haplotypes of typan the set H, r is the total number of

haplotypes in H@ is a scaled mutation rate (based on assumptiang gbpulation
size, mutation rates at individual loci and lengththe haplotype, relating to the
expectation of LD described above), and P is mutatatrix (mapping the mutation
onto markers in the haplotype). This correspondedmext sampled haplotygde,
being obtained by applying a random number of nrat s, to a randomly chosen

existing haplotypeq, wheres is sampled from a geometric distribution.

The above algorithm is implemented in a programi(afyee) called PHASE. At

least for short haplotypes (< 1cM) it appears tastaict haplotypes very accurately,

A nice feature of the algorithm is that an appraadenprobability of each haplotype
for each animal being correct can be obtained fiteerposterior distribution. These
probabilities could potentially be used in the QTiapping procedure. The PHASE|
program is now widely used in human genetics, anikely to be used to construct
the bovine haplotype map as part of the bovine gensequencing activity.

ne
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2. Genome wide association studies

2.1 Introduction
Linkage disequilibrium (LD) mapping of QTL exploip®pulation level associations

between markers and QTL. These associationslzessuse there are small segments
of chromosome in the current population which arscgnded from the same

common ancestor. These chromosome segments, whoehback to the same
common ancestor without intervening recombinatwili,carry identical marker

alleles or marker haplotypes, and if there is a @dinewhere within the

chromosome segment, they will also carry identi@al alleles. There are a number
of QTL mapping strategies which exploit LD, the plest of these is the genome

wide association test using single marker regressio

2.2 Genome wide association tests using single mark  er
regression
In a random mating population with no populatiomisture the association between a

marker and a trait can be tested with single mad@ression as

y=1pn+Xg+e
Wherey is a vector of phenotypek, is a vector of 1sX is a design matrix allocating
records to the marker effegtjs the effect of the marker aeds a vector of random

deviatese; ~ N(0,07), whereg(is the error variance. In this model the effecthef

marker is treated as a fixed effect. Note thaigtlean actually be a vector of 2 times
the number of marker alleles, if both additive a@lodhinance effects are to be
estimated. The underlying assumption here isttietmarker will only affect the trait
if it is in linkage disequilibrium with an unobsey QTL. This model ignores fixed
effects other than the mean, however they can sy éacluded.

The null hypothesis is that the marker has no efiadhe trait, while the alternative
hypothesis is that the marker does affect the @io@tause it is in LD with a QTL).

The null hypothesis is rejected > F whereF is theF statistic calculated

ayviv2?
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from the data for example by an analysis of vaeaddNOVA), F, , . is the value

from anF distribution ata level of significance andl, v2degrees of freedom.

Consider a small example of 10 animals genotyped fngle SNP. The phenotypic
and genotypic data is:

Animal Phenotpe SNP allelel  SNP allele 2

1 2.030502 1 1
2 3.542274 1 2
3 3.834241 1 2
4 4871137 2 2
5 3.407128 1 2
6 2.335734 1 1
7 2.646192 1 1
8 3.762855 1 2
9 3.689349 1 2
10 3.685757 1 2

We need a design matrix X to allocate both the ns@a@hSNP alleles to phenotypes.
In this case we will use an X matrix with numberaivs is equal to the number of
records, and one column for the SNP effect. Weseil the effect of the “1” allele to
zero, so the SNP effect column in thematrix is the number of copies of the “2”

allele an animal carriexX(matrix in bold):

X, Number of “2”

Animal n alleles

© O N O O A~ W N R
I N N N Y
P P P O O R N R B O

=
o
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The mean and SNP effect can then be estimated as:

,E/ _ 1nlln 1nlx N lnly
5_ X1, XX||Xy

Wherey is the (number of animals x 1) vector of phenogype

In the above example the estimated of the mearsalRleffect are

ik

This is not far from the real value of these par@mse The data above was
“simulated” with a mean of 2, a QTL effect of h & (a standard measure of LD)
between the QTL and the SNP of 1, plus a normadiyiduted error term.

The F-value can be calculated as:

(n—l)(ax'y—ll ny'yj

F= o o,
yy-gXy-ul,y
Using the above values, the value of F is 4.56is Tan be compared to the tabulated
F-value at a 5% significance value and 1 and 9 perrof records -1) degrees of
freedom is 5.12. So the SNP effect in this cas®issignificant (not surprisingly

with only 10 records!).

The power of the association test to detect a Qftebting the marker effect depends
on:

1. The ¢ between the marker and QTL. Specifically, sanspde must be
increased by a factor of 4o detect an ungenotyped QTL, compared with the
sample size for testing the QTL itself (Pritchand &rzeworski 2001).

2. The proportion of total phenotypic variance exptaimy the QTL, termehé.

3. The number of phenotypic reconds

4. The allele frequency of the rare allele of the SMmarkerp, which
determines the minimum number of records usedttmate an allele effect.

The power becomes particular sensitive tehenp is small (eg. <0.1).

5. The significance leved set by the experimenter.

25



The power is the probability that the experimerit orrectly reject the null
hypothesis when a QTL of a given size of effecllyedoes exist in the population.
Figure 2.1 illustrates the power of an associatesh to detect a QTL with different
levels of f between the QTL and the marker and with differembers of

phenotypic records (using the formula’s of Luo 1098

Using both this figure, and the extent of LD in diuestock species, we can make
predictions of the number of markers required tiecteQTL in a genome wide

association study. For example, &ofrat least 0.2 is required to achieve powéx8

to detect a QTL ohé = 005with 1000 phenotypic records. In dairy cattfes 0.2 at

100kb. So assuming a genome length of 3000Mbtifecave would need at least 15
000 markers in such an experiment to ensure teexeriarker 100kb from every

QTL. However this assumes that the markers arelggpaced, and all have a rare
allele frequency above 0.2. In practise, the nrark&ay not be evenly spaced and the
rare allele frequency of a reasonable proporticthefmarkers will be below 0.2.
Taking these two factors into account, at leasd@® markers would be required.

To demonstrate the dependence of powerf Gietween a QTL and SNP in another
way, consider the results of Macleod et al. (200Ihey attempted to assess the
power of whole genome association scans in outibrestock with commercially
available SNP panels. In their study, 365 catideergenotyped using a 10,000 SNP
panel while QTL, polygenic and environmental eféeeere simulated for each
animal, with QTL simulated on genotyped SNPs ch@eandom. The power to
detect a QTL accounting for 5% of the phenotypicarece with 365 animals
genotyped, was 37% (p<0.001). There was a stronglation between the F-value
of significant SNPs and theif with the “QTL”, Figure 2.2. The correlation of F-

values with D’ was almost zero.
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Figure 2.1 A. Power to detect a QTL explaining 5%of the phenotypic variance

with a marker. B. Power to detect a QTL explainig 2.5% of the phenotypic

variance with a marker, for different numbers of phenotypic records given in the

legend and for different levels of f between the marker and the QTL, with a P

value of 0.05. Rare allele frequencies at the QTand marker were both 0.2.
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Figure 2.2 Plots of F-values of SNPs tested forsaxiation, against f and D’ of
the tested SNP with the QTL. The QTL accounted fob% of the phenotypic

variance. From Macleod et al. 2007.

2.2.1 Choice of significance level
With such a large number of markers tested in genaide association studies, an

important question is what value @fto choose. In a genome wide association study,
we will be testing 10s or possibly 100s of thousaotdmarkers. A major issue in
setting significance thresholds is the multiplgitesproblem. In most QTL mapping
experiments, many positions along the genome bdr@mosome are analysed for the
presence of a QTL. As a result, when these maltgdts are performed the
"nominal” significance levels of single test dardtrespond to the actual significance
levels in the whole experiment, eg. when conside¥dss a chromosome or across
the whole genome. For example, if we set a poisewignificance threshold of 5%,
we expect 5% of results to be false positivesvdfanalyse 10 000 markers
(assuming for the moment these points are indepg)jdee would expect

10000*0.05 = 500 false positive results! Obviousigre stringent thresholds need to
be set. One option would be to adjust the sigaifee level for the number of
markers tested using a Bonferoni correction toiokda experiment wise P-value of
0.05. However such a correction does not takeuwattaaf the fact that ‘tests’ on the
same chromosome may not be independent, as thersakn be in linkage

disequilibrium with each other as well as the QMAs a result, the Bonferoni
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correction tends to be very conservative, and regusome decision to be made about

how many independent regions of the genome wetedes

Churchill and Doerge (1994) proposed the technafygermutation testing to
overcome the problem of multiple testing in QTL rpigy experiments. Permutation
testing is a method to set appropriate significahoesholds with multiple testing (eg
testing many locations along the genome for thegree of the QTL). Permutation
testing is performed by analysing a large numbesiratilated data sets that have been
generated from the real one, by randomly shufftimgphenotypes across individuals
in the mapping population. This removes any existalationship between genotype
and phenotype, and generates a series of dateosegsponding to the null
hypothesis. Genome scans can then be performétkeea simulated data-sets. For
each simulated data the highest value for thestasitic is identified and stored. The
values obtained over a large number of such simdildata sets are ranked yielding
an empirical distribution of the test statistic anthe null hypothesis of no QTL. The
position of the test statistic obtained with thal @ata in this empirical distribution
immediately measure the significance of the retdstt. . For example if we carry
out 100 000 analyses of permuted data, the F fahtbe 5008' highest value will
represent the cut off point for the 5% level oingfigance. Significance thresholds
can then be set corresponding to 5% false positorethie entire experiment, 5% false
positives for a single chromosome, and so on. B&tion testing is an excellent
method of setting significance thresholds in a cananating population. In
populations with some pedigree structure howewasdomly shuffling phenotypes
across marker genotypes will not preserve any pedigtructure that exists in the

data.

An alternative to attempting to avoid false pogfivs to monitor the number of false
positives relative to the number of positive res@ernando et al. 2004). The
researcher can then set a significance level witacgeptable proportion of false
positives. The false discovery rate (FDR) is theeeted proportion of detected QTL
that are in fact false positives (Benjamini and kwuerg 1995, Weller 1998). FDR
can be calculated for a QTL mapping experiment as

MPmadN,
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where R.axis the largest P value of QTL which exceed thaifitance threshold, n is
the number of QTL which exceed the significanceshold and m is the number of
markers tested. Figure 2.3 shows an example datbe discovery rate in an
experiment where 9918 SNPs were tested for theteffefeed conversion efficiency
in 384 Angus cattle. As the significance threshsitelaxed, the number of

significant SNPs increases. However, the FDR ials@ases.
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Figure 2.3 A. Number of significant markers at diferent P values in a genome
wide association study with 9918 SNPs, using 384 durs cattle with phenotypes

for feed conversion efficiency. B. False discowerate at the different P-values.
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In this experiment, a P-value of 0.001 was chosem eriteria to select SNPs for
further investigation. At this P-value, there wBfesignificant SNPs. So the false
discovery rate was 9918*0.001/56 = 0.18. Thislle¥éalse discovery was deemed
acceptable by the researchers.

A number of other statistics have been proposedmérol the proportion of false
positives, including the proportion of false poss (PRP Fernando et al. 2004), and
the positive false discovery rate (pFDR Storey 2002

2.2.2 Confidence intervals.
There are few reports in the literature on methodsstimate confidence intervals in

genome wide association studies. A method basedoss-validation is described
here. To calculate approximate 95% confidencevats for the location of QTL
underlying the significant SNPs, a genome wide @asion study is first conducted
as above. The data set is then split into twodsaat random (eg. half the animals in
the first data set, the other half in the secortd dat). The genome wide association
study is then re-run for each half of the data.ewhach half of the data confirmed a
significant SNP in the analysis of the full data & significant SNP in almost the
same location), the information is used in thedfeihg way. The position of the
most significant SNP from each split data set wesghated ¥ and %; respectively,
for the " QTL position (taken as the most significant SNR iregion from the full
data set). So for n pairs of such SNPs, the stdretaor of the underlying QTL is

calculated as€X) = /4_1nz X; — X5 . The 95% confidence interval is then the
i=1

position of the most significant SNP from the fdiita analysit1.96s€X) .

Using this approach in a data set with 9918 SNRstyped on 384 Holstein-Friesian
cattle, and for the trait protein kg, there weresshificant SNP clusters (clusters of
SNP putatively marking the same QTL, a cluster mie®f 1 or more SNPSs) in the
full data, and the confidence interval for the QiWas calculated as 2Mb.
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2.2.3 Avoiding spurious false positives due to population structure
The very simple model above for testing associatifos marker to phenotype

assumes there is no structure in the populati@t,isht assumes all animals are
equally related. In livestock populations, oy @opulation for that matter, this is
unlikely to be the case. Multiple offspring petesiselection for specific breeding
goals and breeds or strains within the populatibareate population structure.
Failure to account for population structure canseagpurious associations (false
positives) in the genome wide association studidfard 2000). A simple example
is where the population includes a sire with adangmber of progeny in the
population. In this case the sire has a signitigamgher estimated breeding value
than other sires in the population. If a rarelali a marker any where on the
genome is homozygous in the sire, the sub-populatiade up of his progeny will
have a higher frequency of the allele than theat#te population. As the sires’
estimated breeding value is high, his progeny aldb have higher than average
estimated breeding values. Then in the genome a&sdeciation study, if the number
of progeny of the sire is not accounted for, the adlele will appear to have a

(perhaps significant) positive effect.

Spielman et al. (1993) proposed the transmissiseqdiilibrium test (TDT) which
requires that parents of individuals in the genevite association study are
genotyped to ensure the association between a nall&le and phenotype is linked
to the disease locus, as well as in linkage didibgiuim across the population with it.
In this way the TDT test avoids spurious assoangtidue to population structure.
However the TDT test has a cost in that genotypésih parents must be collected,

and this is often not possible in livestock popolag.

An alternative is to remove the effect of populatstructure using a mixed model:
y=1'u+Xg+Zu+e

Where u is a vector of polygenic effect in the mawdiéh a covariance structure

u ~N(0,Ac?), whereA is the average relationship matrix built from fealigree of

the population, andr?is the polygenic varianceZ is a design matrix allocating

animals to records. In other words, the pedigteeture of the population is
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accounted for in the model. Note that this is BLuUiRh the marker effect and the

mean as fixed effects and the polygenic effectmiadom effects.

In the study of Macleod (2007) described in secldhl, they assessed the effect of
including or omitting the pedigree on the numbe@QdiL detected in the experiment,
in a simulation where no QTL effects were simulgsalall QTL detected are false
positives), Table 2.1. They found a significardrease in the number of false

positives, when the polygenic effects were notyfaltcounted for.

Table 2.1 Detection of type | errors in data witho simulated QTL.

Analysis model Significance level
p<0.005 p<0.001 p<0.0005
Expected type | errors 40 8 4
1. Full pedigree model 39 (SD=14) 9 (SD=5) 4 (Sp=3
2. Sire pedigree model 46 (SD=21) 11 (SD=7) 6 (SD=5.5)
3. No pedigree model 68(SD=31) 18 (SD=11) 16 (SD=7)

4. Selected 27% - full . ) ]
54" (SD=18) 17 (SD=6) 7" (SD=4)
pedigree

The results indicate that the number of type lrergsignificant SNPs detected when
no QTL exist) is significantly higher when no peg is fitted, and even fitting sire

does not remove all spurious associations duepalption structure.

A problem arises if the pedigree of the populatgnot recorded, or is recorded with
many errors. One solution in this case is to beanarkers themselves to infer the
average relationship matrix (Hayes et al. 200 f)apulation structure (eg. Pritchard
2000).
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For a given marker single locus, a similarity indxbetween two individuals andy
is calculated, wherg§,y = 1 when genotype =ii (i.e. both alleles at loci | are
identical) and genotypg=ii, or whenx = ij andy =ij. S,y = 0.5 wherx =ii and

y =ij, or vice versaS, = 0.25 wherx =ij andy = ik, andS,y = 0 when the two

individuals have no alleles in common at the lodue similarity as a result of
i
2
chance alone was =1 wherep; is the frequency of allelein the (random
mating) population, and is the number of alleles at the locus. Then thaticaship
between individualg andy at locud is calculated ag=(S,—s)/(1-s). The average

relationship between the individuals is calculaedhe raveraged over all loci.

With large numbers of markers, average relationstafrices derived from markers
can be very accurate, and can even capture mendalnapling effects (eg. Two full
sibs may be more or less related than 0.5 bechagenive more or less paternal and
maternal chromosome segments than expected byehdainis approach can also be
used to correct for population structure acrosedser lines. In Figure 2.4, the
average relationship matrix derived from markershiswn for a combined Angus

Holstein Population.

ANIMAl 1 e

.762

Animal 1 ..

Figure 2.4. Average-relationship matrix derived fom 9323 SNP loci where the
population consists of two breeds. The diagonaleshent for the first Angus
animal is in the bottom left hand corner and the e#ment for the last Holstein

animal in the top left hand corner.

34



There are a number of situations in which markeivdd relationship matrices will

be especially valuable. When there is limited @pedigree recorded in a population,
marker genotypes may be the only source of infaonatvailable to build

relationship matrices. For example, in livestdblere are many traits which can only
be recorded in animals which are not candidatesdtarction, such as meat quality. If
there is no recorded pedigree linking selectiordaates and commercial animals on
which the trait is recorded, marker derived relagiup matrices could be used in
estimation of QTL effects for marker assisted sadec Another example is
populations where multiple sires are used in timeespaddock of dams, such that
recording pedigree is difficult. Finally, in multreed populations including crosses
between breeds, the marker derived relationshipixnaffers a way to account for the

different breed composition of the animals.

2.3 Genome wide association experiments using hapl  otypes
Rather than using single markers, haplotypes okenarcould be used in the genome

wide association. The effect of haplotypes in wiwd across the genome would then
be tested for their association with phenotypee jlistification for using haplotypes

is that marker haplotypes may be in greater linldigequilibrium with the QTL

alleles than single markers. If this is true, theaf between the QTL and the

haplotypes is increased, thereby increasing theepofthe experiment.

To understand why marker haplotypes can have ahiglith a QTL than an
individual marker, consider two chromosome segmeaitsaining a QTL drawn at
random from the population, which happen to catgntical marker haplotypes for
the markers on the chromosome segment. Therevaredys in which marker
haplotypes can be identical, either they are ddrfkx@m the same common ancestor
so they are identical by descent (IBD), or the samaeker haplotypes have been
regenerated by chance recombination (identicatdtg $BS). If the “haplotype”
consists only of a single SNP the chance of balegtical by state is a function of the
marker homozygosity. Now as more and more makersdded into the
chromosome segment, the chance of regeneratingddemarker haplotypes by

chance recombination is reduced. So the probglbfiét identical haplotypes carried
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by different animals are IBD is increased. If Haplotypes are IBD, then the
chromosome segments will also carry the same QlEleal As the probability of
two identical haplotypes being IBD increases, thapprtion of QTL variance
explained by the haplotypes will increase, as nrankplotypes are more and more

likely to be associated with unique QTL alleles.

Just as for single markers, the proportion of Q&atiance explained by the markers
can be calculated. Let e the frequency of the first QTL allele andog the
frequency of the second QTL allele. The surrougdivarkers are classified into
haplotypes, wittp; the frequency of thé" haplotype. The results can be classified
into a contingency table:

Haplotype

1 [ N
QTL allele 1 A0-D1  pioa-D; PnQ1-Dn Q
QTL allele 2 pgx+tD: piop+Di pa02tDn Q
P Y Pn

[EEN

For a particular haplotype i represented in tha,dae calculated the disequilibrium
as D =p(q.)-pigr, where Q) is the proportion of haplotypes i in the data tery
QTL allele 1 (observed from the data)jgpthe proportion of haplotypes i, angdis
the frequency of QTL allele 1. The proportion loé {QTL variance explained by the

haplotypes, and corrected for sampling effectstivas calculated as

n D?

5p

réha)= ——
1412

For example, in a simulated population of Ne=10@ a chromosome segment of
length 10cM, the proportion of the QTL varianceaatied for by marker haplotypes
when there were 11 markers in the haplotype wasedim one, Figure 2.5. [Note that
if the effective population size was larger, thegmrtion of genetic variance
explained by a 10cM haplotype would be reduced (aodi 1991).]
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Figure 2.5. Proportion of QTL variance explained bymarker haplotypes with an

increasing number of markers in a 10 cM interval

A model for testing haplotypes in an associatiamgicould be similar to the model
described above:

y=1'u+Xg+Zu+e

Howeverg is now a vector of haplotype effects rather thandffect of a single
marker. The haplotypes could be treated as randsitinere are likely to be many of
them and some haplotypes will occur only a smathber of times. The effect of
treating the haplotypes as random is to “shrink’ ¢élstimates of the haplotypes with

only a small number of observations. This is @ddsé because it reflects the

uncertainty of predicting these effects. §o~ N(0,107) wherel is an identity

matrix ando; the variance of the haplotype effects. The glmastimated from the

eguations:
O
#o[, 1'Z 1'X 1Ty
ui= zZ1, ZZ+A7, Z'X zZ'y
g| | X1, X'Z X' X+14,| | Xy
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2 2
Where A, =0—92, andA, = J—‘;. Note that this model assumes no-covariance legtwe
a h
haplotype effects. In practise, the haplotypagavee is unlikely to be known, so
will need to be estimated . A REML program, sustASREML (Gilmour et al

2002), can be used to do this.
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3. Genomic selection

3.1 Introduction to genomic selection
One problem with LE-MAS, LD-MAS or Gene-MAS is thatly a limited proportion

of the total genetic variance is captured by thekera. An alternative to tracing a
limited number of QTL with markers is to tracethié QTL. This can be done by
dividing the entire genome up into chromosome segspéor example defined by
adjacent markers, and then tracing all the chromessegments. This method was
termed genomic selection by Meuwissen et al. (20@gnomic selection exploits
linkage disequilibrium — the assumption is thatéffects of the chromosome
segments will be the same across the populaticauseche markers are in LD with
the QTL that they bracket. Hence the marker dgmsiist be sufficiently high to
ensure that all QTL are in LD with a marker or loaypbe of markers. Genomic
selection has become possible very recently wighathailability of 10s of thousands

of markers and high throughput genotyping technglog

Implementation of Genomic selection conceptuallyceeds in two steps, 1.
Estimation of the effects of chromosome segmenésriaference population and 2.
Prediction of genomic EBVs (GEBVSs) for animals imothe reference population, for
example selection candidates. This second st&paightfoward:  To predict
GEBVs for animals with genotypes but no phenotyfies effect of the chromosome

segments they carry can be summed across the genome
n o

GEBV =) X, g,

Wheren is the number of chromosome segments across ttwergeX; is a design
O

matrix allocating animals to the haplotype effeitsegmeni, and g, is the vector of
effects of the haplotypes within chromosome segment
The difficulty in step 1. is that a very large nuenlof haplotype effects across the

O
chromosome segments must be estimateddthemost likely from a data set where

the number of phenotypic observations is less thamumber of chromosome

segment effects to be estimated.
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It is important to note that genomic selection thesdesirable property that because
all chromosome segment effects are estimated saimedusly, the problem of over-
estimation of QTL effects due to multiple testirgsdribed in section 3.2.2 does not

occur.

Genomic selection can proceed using single markerdptypes of markers or using
an IBD approach. The methodologies that will becdéed in section 4.2 can be
applied to either single markers or haplotypese d@hly difference will be in the
number of effects to estimate per chromosome segfiggroring the problems of

inferring haplotypes). In the case of single meskéere will be one effect per

O
segment (egg, are scalars). In the case of marker haplotypese thill be multiple

O
effects per segment (eg, are a vector). We will describe the IBD approach

separately.

It is important to note that the following genorsilection procedures can be used to
map QTL as well as predict GEBV. Procedures sgdiheLDLA approach as
described yesterday assume one QTL per chromos@iven the distribution of

QTL effects, there are likely to be 100 or more Q@litoughout the genome affecting
a particular quantitative trait (eg. Hayes et 80&). Therefore most chromosomes
will carry at least two QTL affecting the traitaiigh one of these may have a very
small effect. Both estimates of effects and positf a QTL can be biased by other
QTL on the same chromosome, especially if the QrELckosely linked. The worst
case scenario is that two linked QTL cancel eahbrsteffects, so none of the QTL
are detected. Alternatively, a ‘ghost’ QTL, witlvery large confidence interval, can
be positioned between two real QTL (Martinez andnGw 1992). Because genomic
selection approaches can fit all QTL simultanequslgy can remove the effect of the
QTL in brackets adjacent to the true QTL positiginjng tighter confidence intervals.

3.2 Methodologies for genomic selection
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A number of approaches have been proposed for &stignthe single marker or
haplotype effects across chromosome segment efteogenomic selection. A key
difference between these approaches is the assamth@y make about the variances
of haplotype or single marker effects across chisone segments.

The simpler assumption is that the variance ofdtgipk effects is equal across all

chromosome segments. This is analogous to estighbteeding values where we

assume that the breeding values are distribudt@d ~ N (0, Ac) . In the case of the
chromosome segment effects, they would be disgtM(g) ~ N (O, |0'§) where

USis the variance of the effects across all segments.

However this assumption does not capture our “pkinowledge that some
chromosome segments will contain QTL with largeetff, some chromosome
segments will contain QTL with small effects, amtn® chromosome segments will
contain no QTL. We can capture this prior knowkethy modelling the data at two
levels. The first level is at the level of thealaicluding the overall mean, the error

variance and the chromosome segment effects.idmbdel, each chromosome

segment has it's own variance of haplotype or nreekectsV(g,) ~ N (O, Iagzi) .

The second model is at the level of the varianaghoadmosome segment effects, to

allow these to be different for each approach.

We shall consider genomic selection approachestivtisimpler assumption of equal
variances of effects across chromosome segmests fir

3.2.1.1 Least squares
The first approach actually makes no assumptiogarding the distribution of

chromosome segment effects, because it treats dfffests as fixed in a least squares
approach. The approach is identical to that desdrfor LD-MAS. As described by
Meuwissen et al. (2001) least squares genomictgatgaroceeds in two steps.

1. Perform single segment regression analigesvery segment, using the

model

y=ul, +Xg +e
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wherey is thedata vector; p is the overall medpjs a vector oh (n=number

of records) onegy represents the genetic effectstaf haplotypeat thei™ 1-

O
cM segment (the vector of values gf for the differen§ but at the sami ;

Xi is the design matrifor thei™ segment; and is the error deviation. The
dimensions ofj; will be (number of haplotypes within chromosomgraenti
x 1), while the dimensions &f; will be (number of records x number of

haplotypes within chromosome segmgnt

2. Select then most significant segments. Estimate the effettiseo

haplotypes at these positigigultaneously using multiple regression

y=ul + ingi +e where summatio®, is over all significant QTL

positions. All othehaplotype effects are assumed to be zero.

The least squares approach has two major probl€ns.is the choice of significance
level (arguments such as FDR could be used). ddnsot be too lenient, or else the
number of chromosome segment effects to estimdt®deviarger than the number of
phenotypic records, in which case least squaresotdre used. The other is that in
the least squares approach, there is a selectiwhioh chromosome segment effects
to include in the estimation of breeding valueseldasn the effect of the chromosome
segment estimated from single segment regresgisra result, the problem of over-

estimation of segment effects due to multiple testill be incurred.

3.2.2 Ridge regression and BLUP
To overcome the problem of over-estimation of segreéfects in the context of

marker assisted selection, Whittaker et al. (2@@plied ridge regression. In ridge
regression, estimates of theare shrunk towards the mean, in an attempt tadahei
over-estimation of these effects. This shrinkamye also allow all effects to be
estimated simultaneously. In ridge regressiorg diave a common variance. Ridge

regression can be applied to genomic selection:

- ' -1
g=(X X+A) “X'y

whereX is a matrix allocating all marker genotypes orlaggpes to phenotypes, and
y is a vector of phenotypes. The difficulty wiidge regression is that the choice\of

is arbitrary. Further, if a very small valdd@s chosen, there may not be a unique
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solution for the model with the large numbeigpfitted. Methods for selecting values
of A are given in Xu (2003) and Whittaker et al. (2008u (2003) concluded that
ridge regression was not a viable choice for QTIppmag if the model includes
markers across the entire genome. There reasothatasdge regression treats all
effects equally across all loci, whereas in fachynaarkers have negligible effects.
However ridge regression may still perform reasonafell in the context of
estimating genomic breeding values, as the effgeteaccumulated across many
segments.

2

If )\:Jezlag

in the equation for ridge regression, this isaatBLUP as used by

Meuwissen et al. (2001). The BLUP assumes thenee of haplotype effects at

each chromosome segment is the same.

An important question is what valuezf?g should be used in the BLUP (eg. the
variance of haplotype effects at a chromosome sefjmevleuwissen et al. (2001)
dealt with this problem by calculating the geneaciance expected from a genetic
drift-mutation model, and assuming the distributtdrQTL effects was as given by
Hayes and Goddard (2001). See their paper ingheralix for details.

Another way of estimatingzg would be to first estimate the total additive gene
variance (using REML for example) then divide bg tumber of chromosome

segments.

An example of genomic selection using BLUP followonsider the following data
set for animals with a single chromosome, with 4kees defining three chromosome
segments. The markers are SNPs, so there aresibledsaplotypes per segment.
Phenotypes were “simulated” with an overall meag,an effect of haplotype 1 in
the first segment of 1, an effect of haplotype 1he second segment of -0.5, and a
normally distributed error term with mean O andaace 1. The data is as follows:
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Haplotype Haplotype Segment
Segment 1 Haplotype Segment2 | 3 Phenotype
Animal P M P M P M
1 1 1 2 2 1 1 3.41
2 1 2 1 2 1 1 2.47
3 2 2 1 2 1 2 2.32
4 1 3 2 3 2 1 2.32
5 1 4 1 3 2 1 1.75

Note that there are 9 haplotypes observed in (4tldr the first segment, 3 for the
second segment, and 2 for the third segment), windiee are only 5 phenotypic
records.

The design matrixX) for this data set is (in bold):

Segment 1 haplotypes Segment 2 haplotypes  Segment 3 haplotypes
Animal 1 2 3 4 1 2 3 1 2
1 2 0 0 o0 0 2 0 2 0
2 1 1 0 o0 11 0 2 0
3 0o 2 0 o0 11 0 1 1
4 1 0 1 0 0 1 1 1 1
° 1 0o 0 1 10 1 1 1

The vectorl, is[11111]

The mixed model equations are

1nlln 1nlx lDl — 1nly
X1, XX+l 5 X'y

2

o . . :
Where A =—-andl is an Identity matrix (total number of haplotypetotal number

g

of haplotypes).

Assuming a value of 1 foy, the mixed model equations with our data are:
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553113 52 7 3 12.27
58 1 112 6 2 8 2 13.36
O
316003 30 42 H 7.11
110200 11 11 2.32
110021 01 11 1.75
O
323014 21 42 g 6.54
56 3 102 81 8 2 13.93
220111 13 22 4.07
78 4114 82 123 18.15
322112 22 3 4 6.39

Giving the following estimates of the mean and ldgye effects:

Effect Estimate

Mean 211
Segment1l  Haplotype 1 015
Haplotype 2 0

Haplotype 3 .0.05

Haplotype 4 01

Segment 2  Haplotype 1 016
Haplotype 2 031

Haplotype 3 015

Segment 3 Haplotype 1 0.09
Haplotype 2 -0.09

With so few records, the accuracy of estimatinghthglotype effects is low.

Now if we genotype a group of young animals we estimate their GEBV from the

haplotypes they carry:

O
GEBV =Xg

Consider the following animals:

Haplotype segment 1 Haplotype segment 2  Haplotype segment 3

Animal Paternal Maternal Paternal Maternal Paternal Maternal
6 1 2 1 2 1 1
7 1 1 2 2 1 2
8 2 3 2 2 1 2
9 1 4 3 1 1 2
10 2 4 2 2 1 2
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The X matrix for the new animals is:

Segment 1 haplotypes Segment 2 haplotypes  Segment 3 haplotypes
Animal 1 2 3 4 1 2 3 1 2
6 1 1 0 0 1 1 0 2 0
! 2 0 0 0 0 2 0 1 1
8 o 1 1 o0 0o 2 0 1 1
9 1 0 o0 1 1 0 1 1 1
10 0o 1 o0 1 0o 2 0 1 1

] O
Using the values oft and g from above gives the following vector of GEBV

Animal GEBV TBV

0.48 0.5
0.91
0.57
-0.26 0.5
0.52

6
7
8
9

10

As the data was simulated, we also have a truallmg&alue (TBV) for these
animals (the sum of the true haplotype effects rilesd above). We can correlate the
GEBV and TBV to get the accuracy of genomic sebtecin this case, which is 0.43 in

this case.

With BLUP the chromosome segment (or QTL) with lrgest variance will tend to
have it's variance over-estimated, and this will decrease the accuracy of genomic
selection somewhat although much less than wheg déine treated as a fixed effect.
Better estimates of breeding value can be obtawyadethods that allow the variance

of the chromosome segment effects to vary betwbsmmsome segments.

3.2.4 Bayesian methods
If we adopt a Bayesian approach, we can captur@roar knowledge that there are

some chromosome segments containing QTL of lafgetsf some segments with
moderate to small effects, and some segments witQTL at all when we estimate

the effects of haplotypes (or single markers) withie chromosome segments.

46



3.2.4.1 Optional topic: Bayesian statistics refresr

Bayes theorem uses a simple rule about conditjaonaddabilities

P(x]y) = P(xandy/P(y) = P(y | X)P(x)/ P(y)

This can be understood with an example. Suppbagd a jar of coins in which 99%
are fair coins and 1% are double headed coingkel & coin at random and toss it
three times and observe three heads. What istt@bility the coin is a double
headed coin? Let y = the data, eg. 3 heads fromssgs, x is this is a double headed
coin, X’ this is a fair coin. Then P(x)=0.01,P(x)29, P(y|x)=1.0 and P(y|x’) =0.125

(eg. 0.5"3). Then the outcomes of the experimemtearepresented in a table:

P(xorx) P(ylxorx) P(yx)*P(x)
Fair coin 0.99 0.125 0.124
Double headed coin 0.01 1.0 0.01
P(y) 0.134

Therefore the probability that this is a doubledeshcoin given | observed three
heads from three tosses$x|y) = P(y | X)P(x)/ P(y =1.0*0.01/0.134 = 0.075.

That is despite the outcome of three heads themelysa small probability of the coin

being double headed because doubled headed ceise aare.

Bayes theorem is useful because often it is easgltmlate P(y|x), while it is more
difficult to calculate P(x|y), as in the above exden

After the experiment has been done, the P(y) wilalzonstant in all calculations we
do. So we can also write Bayes theorem as

P(x]y) O P(y|x)P(x)

Where the symbdll indicates is proportional to. This is useful hesmthe

calculation of P(y) may be difficult.

The probability P(x|y) is called the posterior pabbity because it is the probability
after the experiment has been done. It is cakedl&dbm two terms. P(y|x) is the
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likelihood used by frequentists. P(x) is called grior probability because it is the
probability of x before the experiment was conddct&his allows us to incorporate

prior knowledge into the estimate of x.

In practise, calculating the posterior distribut{@nd integrating out nuisance
parameters) may be difficult to do. Often it igpmssible to find a formula that gives
the solution. Bayesians have developed a numbapmaches to overcome this

problem.

- Choose priors that make the algebra easy. Salcadigjugate prior
distributions have the property that, when combiwét a particular
distribution for the data, they yield a recognisiéstribution for the
posterior. For instance if the data are normabyrihuted, and a normal
prior is used for a parameter affecting the déuwan tthe posterior
distribution of that parameter will be normally thisuted.

- Numerical integration. If you can calculate thégheof the posterior
distribution at every point, you can integratevieonascence parameters
using numerical integration such as Simpsons rule.

- Simulation. If you can draw samples from the pastalistribution, you
can use the samples to approximate the distributiar example the
mean of many samples is a good approximation tongen of the
distribution. This is what Markov Chain Monte Ca(MCMC) methods

such as Gibbs sampling do.

48



3.2.4.2 Bayesian method with a prior that assumesany QTL have a small effect
and few have a large effect

If we allow the variance of the effects across olmwsome segments to vary, then the
variancesV(g;) = asi must be estimated. Meuwissen et al. (2001) desdra

Bayesian method they termed Bayes Method A to estirthromosome segments

effects and their variances simultaneously.

The method modelled the data at two levels. Tis¢iB at the level of the data as

above:
y=ul, +Xg +e

The prior distribution of the error varians& wasx (-2, 0), which yieldsin
uninformative prior (eg the prior receives littlere weight in the calculation). The

prior distribution of the meap was uniform and uninformative, while the prior
distribution of haplotype effects within chromososegment wasg, ~ N (0, ngi) .

Note that this is equal to BLUP estimation of theatnosome segment effects with

different variances for each segment.

The second level of model is at the variances ofmlesome segment effects. In
Meuwissen et al (2001), the prior distribution loé tvariances of effects across
chromosome segments was consistent with many QEmafl effect and few of

large effect. The prior distribution was the sdahwerted chi-square distribution,

Prior(agzi) ~ x%(v,S), whereSis a scal@arameter and is the number of degrees of

freedom. The values ofandSwere chosen as v=4.012 and S =0.002. These values
were chosen to give a distribution similar to wivauld be expected from the
distribution of QTL effects derived by Hayes andd@ard (2001) and the expected
heterozygosity of QTL under the neutral model &ppendix for details).

The posterior distribution osz;i combines information from the prior and the data.

Information from the data is included by conditimgion the chromosome segment

effects, eg. P(O'si |9,). An advantage of using an inverted chi-squargibdigion as

a prior for the variances is that with normallytdisuted data, the posterior is also
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inverted chi-squared. In fact if the prior for almomosome segment variances has

the scale paramet& and degrees of freedomthen the posterior deT; given the

chromosome segment effect%(asi |g;)is an inverted chi-squared scaled3»g;'g;

andv+n; degrees of freedom:

P(ngi 19:) :X_Z(V+nilS+gi'gi)

wheren; is thenumber of haplotype effects at segmient

We cannot use this posterior distribution direédlyestimating theU; because it is

conditionalon the unknowrm; effects. Meuwissen et al. (2001) therefore usdib&i

sampling to estimate effects and variances.
The Gibbs chain could proceed as follows:

Step 1. Initialise the vectors of haplotype efdar each vector of chromosome
segment effectg; for j=1,n where Rnis the number of haplotypes at the chromosome

segment, with a small positive number. The ovenagldnu must also be initialised.

Step 2. Update thezgi for the I chromosome segment by sampling it from the fully
conditional distribution y *(v+n.,S+g,'g;), where v is 4.012 and S is 0.002, and

is the number of haplotype effects at ifilehromosome segment.

Step 3. Given thg andu calculate the values ferase=y - Xg -1, i, whereX =

[X1 X2 X3 ...] is the design matrix of all haplotyp#ects; andy is a vector of all

haplotype effects across chromosome segments. Upate the error variancee

by drawing a single sample frop?(n-2,e'e, )

Step 4. Sample the overalkan p given the updated error variance from a abrm
distribution with mear- (1n y-1 Xg)and variances’ /n, whereX = [X; X2 X3 ...]
n

is the design matrix of all haplotypffects; and) is a vector of all haplotype effects.
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Step 5. Sample all the haplotype effegtgigen the newly sampled, »° ands"y;

Xy =X X =X 1
from a normal distribution with meaf ™. 0 9(.,_02) . n#
XX, +0o;g /o,

, WwhereX;; is

column ofX of effectg;; gj=0) €qualgy except that the effect of; is set to zero, and

2
variancea; /(X X; +%/ ).
o

Step 6. Repeat Step 2 (using the updgfe Step 5 for a large number of cycles.

Other authors have published similar methods btlt different priors used for the
variance of chromosome segment effed¢tsXu (2003) this was I¥; (eg. an

inverted chi-square distribution with 0 degreefreédom). Xu (2003) also described
their method for single SNP markers, rather tharkerehaplotypes. Therefore the
matriciesX; are the design matricies for the effect of a @nghrker, so X=1 if the

i SNP genotype for individuglis aay, X;=0 if the " SNP genotype for individul

iS adp, and X=-1 if the f" SNP genotype for individuglis @a. The implicit
assumption in Xu (2003) is that the partial regassoefficient,g;, (the effect of
marker i on the trait), will absorb partly the effe of all QTL located between
markers i-1 and i+1. The validity of this assuraptwill depend on the LD between
the markers and the QTL.

Ter Braak et al. (2005) argued that prior used by(2003) would result in an
improper posterior distribution, in particular asperior of gwith infinite mass near

zero. To ensure a valid posterior, they alteredattior distribution of variance of

chromosome segment effects to bg 2,

Xu (2003) actually proposed their method for QTLopiag rather than genomic
selection, claiming that the method gave more pesestimates of QTL location than
single QTL models. This was because the effeat@fTL was removed in adjacent
marker brackets so the QTL were mapped to a smatkwal. The approach also
gave more accurate estimates of QTL effect, aptblelem of over-estimating the
QTL effect due to multiple testing were avoidedu (R003) describe applications for

plant populations for QTL mapping such as backgrdsable haploid, or F2.
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Meuwissen et al. (2001) pointed out that in reatlitye distribution of genetic
variances across chromosome segments is thatafeereany chromosome segments
which contain no QTL, and relatively few chromososegments which do contain
QTL. However, the prior densitf method BayesA does not actually reflect this, th
prior does not have a density peakr%t= 0; infact its probability ofrzgi =0is
infinitesimal. Meuwissen et al. (2001) addresgesl in their Method BayesB.

Method BayesB used a prior that has a high demsimazgi = Oand has an inverted
chi-square distribution fofg > 0; . The prior distribution was

2
gt

Hﬁ; ~x 2 (v, S) with probability (1 — 7},

a.. = 0 with probability T,

wherer= 4.234 and S = 0.043%ld the mean and variancef; given that="; > 0

(see Appendix for derivation @fandSvalues).

Figure 4.1 lllustrates the difference between ther glistribution of variances of

chromosome segment effects used in method Bayesl Ehat used in method

BayesA.
81 S
| =
8'% 1=}
2 "

T T T T T T T T T
0.000 0.005 0.010 0.015 0.000 0.001 0.002 0.003 0.004

value value

A. B.

Figure 4.1 A. Prior distribution of variances of diiromosome segment effects

used in method BayesA, and B. Prior distribution bvariances of chromosome
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segment effects used in method BayesB in Meuwissetral. (2001), for 20% of

chromosome segments containing QTL.

The figure illustrates the infinitesimal densitytbé prior used in BayesA at 0, and
the much higher mass near (and actually at) zerthéprior used in BayesB. The
Gibbs sampler described in Method BayesA cannatsked in method BayesB, as it
will not move through entire sampling space. Thisecause the sampling @2@ =0
from the posterior distribution of Var(@f?gi ) is not possible ifjigi >0, which it will
never be ag; = 0 has an infinitesimalrobability ifcrzgi > 0. This problem was
resolved by samplin.gzgi andg; simultaneously using a Metropolis-Hastings
algorithm (see Appendix for details).

3.2.5 Evaluation of accuracy of genomic selection methods
To evaluate their methods (least squares, BLUPe8a&yand Bayes B), a genome of

1000 cM was simulated witnmarker spacing of 1 cM. The markers surrounding
every 1-cMregion were combined into marker haplotypes. Du@tte population
size (N. = 100), the marker haplotypes were in linkagegligédriumwith the QTL
located between the markers. The effects of thencbsome segments were
predicted in one generation of 2000 animals, aedtkeeding values for the progeny
of these animals were predicted based only on @r&ers which they carried, Table
4.1.

Table 4.1. Comparing estimatedss.true breeding values in progeny with no
phenotypic records (from Meuwissen et al. (2001)Chromosome segments were

estimated in a population of 2000 animals.

rtev.esv + SE brev.esv + SE
LS 0.318 £ 0.018 0.285 + 0.024
BLUP 0.732 £ 0.030 0.896 + 0.045
BayesA 0.798 0.827
BayesB 0.848 + 0.012 0.946 + 0.018
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Mean of five replicated simulations LS, least sggaBLUP, best linear unbiased
prediction; Bayes, Bayesian method with inversestjuare prior distribution and
where the prior density of having zero QTL effegtss increased;gy.esv,
correlation between estimated and true breedingegalequals accuracy of selectio

>

);

brev.esv, regression of true on estimated breeding value.

The least squares method does very poorly, prignbetause the haplotype effects
are over-estimated. The increased accuracy dalyesian approach occurs because
this method sets many of the effects of the chram@ssegments to close to zero in
BayesA or zero in BayesB, and “shrinks” the estenatif effects of other

chromosome segments based on a prior distribufi@Qa effects.

3.3 Factors affecting the accuracy of genomic sele  ction
While the simulations demonstrate genomic seledimmhuge potential to increase

rates of genetic gain, several key questions remegiarding it's implementation.
These are
1) How many markers are required, determined by thengxf LD.
2) How many phenotypic records are required in thiainexperiment estimating
the effect of chromosome segments

3) How do non-additive effects affect the accuracgeromic selection.

3.3.1 Extent of linkage disequilibrium and number of markers
required
The arguments here are similar to those given aptehr 3 for the number of markers

required for LD-MAS. For genomic selection to woitke haplotypes or single
markers must be in sufficient LD with the QTL subht the haplotype or single
markers will predict the effects of the QTL acrtiss population. For genomic
selection to be as successful as in the simulabbMeuwissen et al. (2001), the level
of LD between adjacent markers should be=0.2, as this was the level of LD there
simulations generated. Solberg et al. (2006) sgedlation of a population with N
100 to assess the effect of marker spacing ondteacy of genomic selection (with
BayesMethodB). They found a drop in accuracy @623 marker spacing was

increased from one marker every 0.5cM to one magery 4cM. Calus et al. (2007)
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used simulation to assess the effect of the avefdgween adjacent marker pairs on
the accuracy of genomic selection (where the acguses the correlation of true
breeding values and GEBV for a group of un-phenedygnimals). They found that
accuracy increased dramatically as the averaetween adjacent markers increased,
from 0.68 when the averagehetween adjacent markers was 0.1, to 0.82 when the

averageTbetween adjacent markers was 0.2, Figure 4.2.

In dairy cattle populations, an averadefr0.2 between adjacent markers is only
achieved when markers are spaced every 100kbheAsavine genome is
approximately 3 000 000kb, this implies that inesrdf 30 000 markers are required

for genomic selection to be successful!

3.3.2 Haplotypes or single markers

Closely related to the effect of the extent of $igk disequilibrium on the accuracy of
genomic selection is the effect of using singlekaes rather than haplotypes. The
advantage of haplotypes over single markers in g@neelection is dependent on
how accurately the haplotypes identify identicaldegcent chromosome segments
compared to the accuracy with which single markaatify identical by descent
chromosome segments. This can be quantified gsrtip®rtion of QTL variance
which is explained by the haplotype effects comgdoethe proportion of QTL
variance which is explained by single marker effeas discussed in section 2.3.
Calus et al. (2007) compared the accuracy of GE®B\pfogeny without phenotypic
records from genomic selection using single markersarker haplotypes, in
simulated data.
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Figure 4.2 Accuracies of genomic breeding valuestanated for animals with no
phenotypic information with three different modelsof genomic selection: SNP1,
using the single marker approach of Xu (2003), witlthe addition of a polygenic
effect in the model; HAP_IBS using haplotypes of gdcent markers and method
BayesB of Meuwissen et al (2001) to estimate hapjpe effects, with the addition

of a polygenic effect; HAP_IBD using windows of haptypes of 10 markers in

the approach of Meuwissen and Goddard (2004). Withermission from the
authors., Calus et al. (2007).

They constructed haplotypes from the two adjacearkers defining each
chromosome segment. They found that the advatfaggng haplotypes increased
at lower marker densities (or lowénalues between adjacent makers). When#he r
between adjacent markers was 0.2 or greater, Wesdittle advantage in using
marker haplotypes, Figure 4.2 Presenting the acguas a function of the averade r
between adjacent markers, as Calus et al. (20Q713% dppealing as the results can be
used to infer the number of markers required toeaeha desired accuracy of
genomic selection given the extent of LD observetthe livestock species in
guestion. However, in all cases the accuracy aeligith the IBD approach was
higher than regression on single markers or maitkaptotypes. This was particularly
true at low densities of markers, probably duéntodontribution from linkage.
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3.3.4 Number of phenotypic records in the reference population

The accuracy of genomic selection will depend @rthmber of haplotype effects at
the chromosome segments, and the number of pheaoggords per unique
haplotype, or per marker allele if single markeesw@sed. The more phenotypic
records available, the more observations therebgilber haplotype and the higher the
accuracy of genomic selection. There are als@ldifferences between statistical
methodologies in the accuracy achieved with a lamliper of records. Meuwisseh
al. (2001) compared the accuracy of least squaresPBind BayesB with different
numbers of phenotypic records, Table 4.2. Theulteslso suggest that in the order
of 2000 phenotypic records are required to acclyrastimate the haplotype effects.
In their simulation, a heritability of 0.3 was usdélthe heritability were higher, so
that phenotype was a more accurate predictor aftgpa, fewer records may be
required. For example, in dairy cattle, daughteldydeviations (DYDs) are often

used as the phenotype. DYDs can have an accuf&c9®

Table 4.2: Correlations between true and estimateldreeding values
when the number of phenotypic records is varied (lsm Meuwissen et

al. 2001, with permission from the authors)

No. of phenotypic
records

500 1000 2200

Least squares 0.1249.204 0.318
Best linear unbiased prediction (BLUP) 0.57659 0.732
BayesB 0.708 0.787 0.848

3.4 Non additive effects in genomic selection
While breeding values by definition should incluaddy additive effects (genetic

merit which is passed from one generation to th&)nm some cases it may be
desirable to predict genetic merit which bettedprean animals actual phenotype,
for example through the inclusion of dominance epdtatic effects. If phenotypes
are used in the estimation of chromosome segméstdtef(rather than DYDs for
example), inclusion of epistatic and dominanceat$fen the model could improve the
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accuracy of estimating the additive effect of theoosnosome segment effects.
Further, dominance and epistatic effects can béo#g&d to produce sets of progeny

with maximum genetic merit, through mate selectmrexample (Kinghorn 1998).

Estimates of dominance effects with single markessraight forward, requiring

extension of the genetic model to estimate twoctffper SNP, rather than one:
p p
Yi :,U"'injgi +Z\Nijdi t6
Wherex; andw;; are defined as; = J2 and w; = -1for genotype AA;, x; =0 and

w; =1for AiAz and ,x; = —J2 andw; = - Tor A,A,. If Gy, Gi andGy; are the

¥ N
genotypic coefficients for the three genotypesntge= G,, — G,, for the additive
effect andd, = 2G,, - G,, —G,;. Thexandw coded in this way are independent and

each has a zero expectation and unity variance. BElyesian estimation method of
Xu (2003) can then be extended to estintdates well ag;.

Estimation of epistatic effects is more difficudiye to extremely large number of
marker by marker interactions in the single magggrroach, or haplotype by
haplotype interactions in the haplotype approaxu.(2007) extended the single
marker Bayesian approach in Xu (2003) to accoung¢pastatic effects.
A model including epistatic effects can be writeen

y=lzkl:g,a’, +IZ::(9| xg,.)a,. +&

Where g, x g,.is the element wise multiplication of vect@isindg;, ai is the main

effect of locud, andaj; is the epistatic effect between lodwdl’. The model can
be simplified to fit into the methodology of Xu @8) by using to index thg™
genetic effect foj=1,q, whereq=k(k+1)/2. The model can then be re-written

q
y=2Zy+e
=1

For exampleZ=g, andy=ai if the ™ effect is a main effect, argj= g, x g,.and

y=ai if the|™ effect is an epistatic effect.
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Xu (2007) used a similar approach to that in Xu0@(Qo estimate thg. A normal

prior was assigned to the, wherey, ~ N (0,07). The prior assigned to the’ was

o? ~1/ x;.., For details on this prior distribution see Xu @z}

Xu (2007) showed that epistatic effects could hemeded both in simulated data with
this approach using 600 records in a back-croggred hey also applied the method
to real data from a barley backcross experiment.

Gianola et al. (2006) presented semi-parametricquhores for genomic selection
which allowed them to estimate interactions betwaaentially hundreds of
thousands of markers. Their methods included keeggession, which regress
marker effects according to a smoothing parantetembedded into the standard
mixed model equations. Their model treated theawnae of effects across
chromosome segments as equal. In a small exathpleachieved accuracies of up
to 0.85 for predicted genotypic values in selectiandidates with no phenotypes,

when both dominance and epistasis were simuldtedmore details see their paper.

3.5 Genomic selection with low marker density
The IBD methodology for genomic selection is pautily suited to cases where

marker density is low, as in this case there walsbme advantage in including the
linkage information in the estimation of chromososegment effects carried by each
animal. Calus et al. (2007) demonstrated thabfisiee IBD approach can achieve
high accuracies of genomic selection even withl&ewsér between adjacent markers
as low as 0.1, Figure 4.2. This result is howelsgrendent on population structure.
For example large sire half sib groups in the patoh will allow accurate estimation
of sire haplotypes, such that linkage informationtdbutes considerably to the

accuracy of genomic selection.

In LD-MAS, a polygenic breeding value is includedihe GEBV to pick up genetic
variance not captured by the markers. In genoelecton as specified by
Meuwissen et al. (2001), a polygenic componenbtsmcluded in the prediction of
GEBVs. However if the available marker densitpas sufficient to ensure all QTL
are in high LD with a marker of haplotype, inclusiof a polygenic component in the
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GEBV from genomic selection would recapture somthefeffects of the QTL which

are not in sufficient LD with markers.

Even with a sparse marker map, genomic selectioralsm be used to increase the
efficiency of development of composite lines (Pat#emn et al. 2006). Crosses
between breeds will exhibit much greater levelkDfthan within breed populations.
Piyasatian et al. (2006) demonstrated that thetgemerit of composite lines can be
improved by using genomic selection to capture mlwsome segments with the

largest effects from the contributing breeds, ewéh a sparse marker map.

3.6 Genomic selection across populations and breeds
In practise Genomic selection is always applied population that is different to the

reference population where the marker effects stienated. It might be that the
selection candidates are from the same breedréyoanger than the reference
population, or they could be from a different setactline or breed. Genomic
selection relies on the phase of LD between markedsQTL being the same in the
selection candidates as in the reference populatitowever as the two populations
diverge, this is less and less likely to be theecaspecially if the distance between
markers and QTL is relatively large. In sectioh We used the correlation between r
in two populations, corr(jr,), to assess the persistence of LD across popnsatibo

if the chromosome segment effects are estimatpdpalation 1, and GEBVs in that
population can be predicted with an accuracyhen the GEBVs of animals
population 2 may be predicted from the chromosoegenent effects of population 1
with an accuracy, = x;*corr(ry,r2). For each set of populations, one can work loait t

marker density that is required to obtain a cgmr= 0.9 (De Roos et al. 2007).

In the above, we have assumed that effect of QIEleal are similar in different
breeds and populations. For some QTL which haea b@aced to known mutations,
the alleles do act reasonably similarly in diffarbreeds and populations. For
example, the A allele of the DGAT1 gene resultsareased fat yield and reduced
protein yield and milk volume in New Zealand Hoist€riesians, Jersey’s and
Ayshires (Spelman et al. 2002). However whiledize of the effects are consistent

for protein and milk volume in the Holstein-Frigsiand Jersey breeds, the size of the
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fat response in Holstein-Friesians is nearly dotie for Jerseys (Spelman et al.
2002). Another problem is that we have assumedhieasame mutations affecting
production traits are polymorphic in different basee This is true for some well
characterised mutations such as the K232A mutati@GAT1, which is

polymorphic in Holsteins, Jerseys, Aryshires anmiesBos indicusbreeds (Spelman

et al. 2002, Kaupe et al. 2004). Other mutatisnsh as some of the functional
mutations in the myostatin gene, appear to breedifsp (Dunner et al. 2003). One
solution would be to use a multi-breed referengeupation, so that all the genetic
variants are captured. Finally, genotype by emwirent interaction may also reduce
the accuracy of predicted GEBV when the chromossegenent effects are estimated

from animals in another population.

3.7 How often to re-estimate the chromosome segment
effects?

If the markers used in genomic selection were &gtttee underlying mutations
causing the QTL effects, the estimation of chromossegment effects could be
performed once in the reference population. GERBVsll subsequent generations
could be predicted using these effects. A momyikituation in practise is that there
will be markers with low to moderate levels of rithwthe underlying mutations
causing the QTL effect. Over time, recombinatietween the markers and QTL will
reduce the accuracy of the GEBV using chromosomment effects predicted from
the original reference population. Meuwissen e(2001) used simulations to
investigate the change in accuracy of GEBV withreneasing number of generations
between the reference population and the popul&biowhich GEBV were estimated,
Table 4.3.

Table 4.3. The correlation between estimated andue breeding values in
generations 1003-1008, where the estimated breedinglues are obtained from
the BayesB marker estimates in generations 1001 ad®02. From Meuwissen
et al. (2001).

Generation M TBV:EBV
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1003 0.848

1004 0.804
1005 0.768
1006 0.758
1007 0.734
1008 0.718

The generations 1004-1008 are obtained in the sayas 1003 from their
parental generations.

After five generations, the decline in accuracys®BV was large. This suggests that
with the levels of LD simulated in Meuwissen et(@001), re-estimation of the
chromosome effects should take place every 3 geoesa

De Roos et al (2007) investigated the same issung usal SNP data from both Dutch
and Australian Holstein Bulls. They calculated tlerelation of r values at different
marker distances for sub-divisions of the same [atjoun across time, as an indicator
of persistency of marker-QTL phase across genematid hey found correlation of r
values between Dutch Holstein bulls before 1995@nith Holstein calves born in
2006 is 0.9 at 135kb. They concluded from thisdlaat with 20,000 markers, the
predictions of chromosome segment effects shoulashble for two generations, as
accuracy will be reduced only slightly (by a facto®) by breakdown of LD phase

over this time.

3.8 Cost effective genomic selection
Depending on the genotyping technology used, tBeafogenotyping animals for ~

30 000 SNPs may be $500, while the cost of genogypnimals for ~ 50 SNPs may
be as low as $20. If the number of markers requiveapply genomic selection can
be reduced, this could represent a large savitigetbreeding program (and may

make the difference between applying or not apglgenomic selection).

There are two possibilities to reduce the numbenaikers in genomic selection.
When the method BayesB of Meuwissen et al. (200&applied to estimate
chromosome segment effects in the reference popuojahany of the chromosome

segment effects will be set to close to zero. &wtyping the markers in these
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segments in animals where GEBVs are to be preditgn) generations has no value.
In other words only the subset of markers in chreomoe segments with a non-zero
effect need be genotyped. One problem with ths@h occurs when genomic
selection is extended to multiple traits. If tiedestion criteria includes say 30 traits,
and there are 50 markers per trait with non-zefeces, then the total number of
markers to be genotyped may be ~ 1500. For mosttgeing platforms, the cost of
genotyping 1500 markers is close to the cost obtygamng 30000 markers!

3.9 Optimal breeding program design with genomic se lection
Genomic selection allows prediction of very acoeifaBVs for young animals. The

effect of such information on the optimal breedomggram design for the different

livestock industries could be profound.

In dairy cattle breeding, progeny testing is cutlsensed to identify bulls of high
genetic merit. A good description of the progesst scheme was given by Schaeffer
et al. (2006) “In the progeny test scheme, a nurabelite cows are identified each
year as the dams of young bulls, and these cowsated to specific sires”. At one
year of age, the young bulls are test mated toge laumber of cows in the
population, in order that they will have about H2ughters with their first EBVs for
production and other traits. Approximately 43 ni@nfiater the daughters from these
matings complete their first lactations and thengbull EBVs for production are
produced with an accuracy of approximately 75% .thig point the young bull is
proven or returned to service.” As suggested tha8iter et al. (2006), genomic
selection allows GEBVs with an accuracy of 0.7%@ater to be calculated for bull
calves. Bull calves can therefore be selectelisistage, rather than following
progeny testing. This reduces the generationvatday at least half. Further genetic
gains can be made by genotyping the elite bull damdisselecting a smaller number
for mating to specific sires. Schaffer (2006)gesjed the effect of genomic
selection may be to shift the structure of theydeattle breeding industry to a model
similar to that used by the poultry and swine indas, where companies maintain a

nucleus of elite animals “within house”. Anothdfeet of genomic selection may be
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more appropriate balance in the direction of gergdin. Currently in the dairy
industry, large gains are made for productiongraithile the gains in fertility are
relatively smaller, in part due to the lower accyraf fertility EBVs (and also
because production and fertility are unfavourableetated). Genomic selection
could increase the accuracy of fertility EBVs,uffscient records were taken in the
initial experiment to estimate chromosome segmgéetts, allowing greater

contribution of this trait to the total breedingedtive.
In the pig. sheep and poultry industries, a majgract of genomic selection is likely

to be increased genetic gain for hard to seledr&its. This would include traits like

disease resistance in poultry and meat qualitygs.p
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4. Imputation of genotypes in animal breeding

4.1 Introduction
If we knew the haplotypes individuals carried atms\vpoint on the genome, and we

knew what SNP alleles were contained within witbreanique haplotype in the

population, then we could infer or impute the ggpes an individual carries for any
SNP locus.

This would be useful for a number of reasons.

Although the SNP array technology is that typicaiigater than 99.9% of
all SNP are called per individual, at high qualityis still leaves a
considerable number of SNP genotypes missing piridual. For
example, with 50,000 SNP, this would result in 58simg genotypes. For
larger arrays, the number missing will be even érghMissing genotypes
complicate the implementation of genomic selecéind genome wide
association studies — the X matrix will be incontplelmputation can be
used to infer these missing genotypes

Imputation could be used to recover the high dgrgganotypes for
animals genotyped with a low density array. Faregle, we may be able
to impute 50K genotypes for an individual from attgenotypes from a
7K array.

Combining data sets. This particularly usefuliegroup of individuals
are genotyped for one panel of SNPs, and anotbepgs genotyped for
another panel. Provided there is sufficient oyedatween the two panels,
the full set of SNPs can be imputed into all induals, and genomic
prediction or genome wide association studies caocged, potentially
with greater power.

Imputation could be used to recover genotypes t@il&ill genome
sequence data (eg. very dense SNP /insertionsadetioths, copy humber
variants, to enable genomic predictions or genomde @&ssociation studies
from this full sequence data.

As will be described in the next chapter, thenensertainty in calling

genotypes from full sequence data, particularthéf coverage of sequence
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is low. For example, if a region of the genomsdguenced at a depth of
two sequences, it is difficult to determine if thdividual is heterozygous
or homozygous, as both sequences may be derivettifre paternal or
maternal chromosome. Imputation is used to takamtage of the
linkage disequilibrium in the population to improwe probability of

correctly calling genotypes from sequence data.

4.2 How does imputation work — Hidden Markov Mode Is

As described above, if we knew the haplotypes idd&ls carried at every point on
the genome, and we knew what SNP alleles were iassdavith each unique
haplotype in the population, then we could infemapute the genotypes an individual
carries for any SNP locus.

In practice of course, we don’t know the true hages that each individual carries.
Hidden Markov Models (HMM), are a useful approaehneh In a HMM, the hidden
state, the true haplotypes in the population, gdeehe observations, which are the
genotypes. HMM have been widely used to estirtteggorobability that an

individual carries a particular genotype at a patir SNP, given the genotype data

for that individual at the other SNP and the réshe population.

Many of the methods for imputation that use HMNMbaiske advantage of a reference
population, genotyped for all SNPs, that has beewipusly phased. These
reference haplotypes are designated H. Thehapktypes carried by the target
individuals for imputation (eg. those genotypea &w density SNP array) are
considered as a mosaic of the haplotypes in tleeeefe. “Mosaic” means that the
target individual must comprise of haplotypes fritra reference population, with
some crossovers between the haplotypes, and soeneudation. This is illustrated

in Figure 1. Some methods assume this populaasrbieen previously phased from

haplotypes to genotypes, using the PHASE prograraxample.
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Figure 1. From Marchini and Howie (2010). A cart@n of genotype imputation.

A. A phased reference population is the a requireemt in many imputation

programs. B. The genotypes in the target populain are phased, then assigned

a mosaic of the reference haplotypes via a hiddenarkov model.

If we consider a chromosome with L loci, then tive tomponents of a Hidden

Markov Models are

hidden states (S). In this case these are indigattables assigning the
alleles at the reference haplotypes to target iddals. There are one 1 to
L indicator variables, and each indicator variatdenprises two numbers,
one for the paternal and one for the maternal cbsmmme. For example,
in the Figure above, the value of S1 for targeividdial one would be 1,2.
observed values. In this case these are the geesiby of which some
may be missing.

state transition probabilities. This is a h x htnmadescribing the
probability of moving from one haplotype to anotkfer example through
recombination or mutation).

emission probabilities. In the HMM, the underlyistate (haplotypes) are
said to “emit” the observations, the genotypes.tifeéeemission

67



probabilities are the probability of observing tienotype carried by an
individual for a particular underlying hidden stateor example, if the
genotype at a particular locus was AT, and the tyidg hidden state was
AACG, with the bold allele the allele at the curr8MP, the emission
probability would be 1 (assuming no genotyping grro

- Initial state probabilities. This is the probatyiihe HMM starts in a

particular state, eg at a particular haplotype.

The methods for imputation differ in their assuraps about the hidden states, the
way state transition probabilities are derived,s=ioin probabilities, and initial state

probabilities.

The major strategies for imputation described aliterature will be reviewed briefly
here. Much of the material is from two reviewseon Nature Reviews Genetics
(Marchini and Howie 2010), and another in Human &ies (2008). Both reviews

are suggested further reading.

IMPUTEL.0 uses a reference population as described abowegegof phased
haplotypes), and parameters describing the recatibimrate to estimate the
probability of genotypes.

The probability of the genotypes for an individ@lto be imputed, given the
reference haplotypes H, is then

2(GilH,6,p) = ZP(GiIS,HjP[SlH,p]

Wherep is the recombination rate map across the genfnsea mutation parameter
that (rarely) allows the genotype vector for indival i to differ through mutation
from the reference haplotypes that they are derfred, and S is the hidden states
(haplotypes). S can also be thought of as a desagrix which “copies” the selected
reference haplotypes to the target genotypes.ekample, if there are 5 loci, and
individual i is a mosaic of haplotypes from theereince 1 and 2, with a crossover
between the third and fourth loci, then S would be

11100

00011
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The probability is calculated by integrating ovimpassible states the probability of
the observed genotypes given the states and thatiorutate, and the transition
between states P(SHl, This term is the probability of the States gitke reference
haplotypes and the recombination rate.

The recombination rate map must be supplied to IMPUO. A forward-backward
algorithm for HMM is used to estimate the probapidlistributions (Rabiner et al.
1989).

IMPUTEZ2.0 is a modification of IMPUTE1.0. This method fiestimates the phase
of SNP in the target population, then comparesatipbsised haplotypes to those in the
reference population to impute the missing allelés this algorithm uses haploid
imputation (eg haplotypes in the target are contparehe haplotypes of the
reference, rather than comparing genotypes), ttitoeiof this method (Howie et al.

2009) demonstrate that this leads to much fastpuiation.

FastPHASE FastPHASE (Scheet and Stephens2009), is an icetthh of the
PHASE program already discussed. The hidden statee model are clusters of
haplotypes rather than the haplotypes themselvesexample, a cluster may be a
group of haplotypes that are almost identical, \thih exception of a (rare) single
mutation. Clustering very similar haplotypes gheet¢duces the number of hidden
states that must be considered, which decreasgsutation time. The default setting
for the number of clusters at a given genomic locaih fastPHASE is 20.

The probability haplotype | for the current indiuil comes from the'kcluster is

weighted according to how many haplotypes of typeke been observed:

P(Gila, 6,7) = ZF[EL‘ISL‘]P[SH@,T]

Wherea is a vector of the proportion of times each oftilaplotype clusters is occurs,
eg. The weight for the kth haplotype cluster ma@!#& In this case is the

frequency of alleles within each cluster. The $raon probabilities, the probability

of switching between a cluster for an individualthe term P(Za,r). ris a
combination of recombination rates and mutatioagaboth of which are estimated in
the fastPHASE program.
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The likelihood of genotype Gi is then

L(Gi|H, @, 8,7) = 1_[ P(Gila,8,7) 1_[ P(Hila, 8,7)

An Expectation-Maximisation algorithm is used totfie model, and compute
genotype probabilities.

MACH (Lietal. 2010). MACH has some similaritiegiwFastPHASE, however it
uses the full set of haplotypes as hidden stather¢han haplotype clusters. During
each EM iteration of the model fitting, the currestimates of haplotype phase,
except for the individual being fitted, are usedresreference haplotypes.
Individuals are removed from the set of referermgldtypes one at a time and are
updated, with the updated pair of haplotypes ferittaividual is sampled from the
posterior probability distribution, based on therent reference haplotypes:

P(GilD —i,8,1) = Z P(GilS,7)P(S|D —i, 6)

where D—i is the set of estimated haplotypes ahdilviduals except i, S denotes the
hidden states of the HMMj, is an ‘error’ parameter that controls how sim{Eiris to

the copied haplotypes (to account for genotypimgrgandd is a ‘crossover’

parameter that controls transitions between thédmdtates. The parametgrand6

are during each iteration (eg estimated from tha)daased on counts of the number
and location of the change points in the hiddetest& and counts of the concordance
between the observed genotypes to those impligddogampled hidden states.
Imputation of unobserved genotypes using a referpacel of haplotypes, H, is
naturally accommodated in this method by adding khé set of estimated

haplotypes D—I (Marchini and Howie 2010).

BEAGLE (Browning and Browning 2008). BEAGLE uses a dif@ approach to
define the hidden states to the methods definedeabbocal clustering of haplotypes
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is used- that is, for a given genomic location,gbsesible hidden states are reduced to
those that are observed in the reference. Thisdentrast to IMPUTE and MACH,
where at any position the number of states is timel®er of reference haplotypes
squared. So the number of hidden states in BEA@&ies with location. In

addition, a haplotype cluster can only emit a ®rajlele (eg A or T) — haplotypes
carrying different alleles are assigned to différdasters, and there is O probability of
genotyping error assumed. The idea behind thasditeans is to reduce

computation. A final difference is that many hdppe configurations are assigned a
probability of zero by the Browning model. Thisoals the model to be more
parsimonious (eg better fit to the data), but mehasthe haplotype model must be
constructed from all sampled individuals, rathemtfrom a subset acting as a
reference panel. Otherwise if a new haplotypacoantered in the target
individuals, there may be no haplotype configuraiiothe model that is consistent
with the individual's genotype. Some of the défeces between BEAGLE and
MACH/IMPUTE and fastPHASE are summarized in FigRrgrom Browning 2008).

One key difference between BEAGLE and MACH/IMPUTESHPHASE is that no

use is made in BEAGLE of population parametersmdgpation rates or mutation
rates. When the reference population is smai,itha disadvantage for BEAGLE, as
the only information is from the data in the cutrganomic location, while
MACH/IMPUTE/fastPHASE can gain accuracy from theliéidnal information on

the population and genome wide parameters sucimit@oation rates and mutation
rates. However when the data set is large, eStigithese parameters can incur
additional computational cost, and using the patarsavhen they are inaccurate may

actually decrease the accuracy of imputation.
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Li and Stephens framework Browning model

0
Reference
Haplotype 1 v
\\( 0 1 1
Reference ‘\'/A
Haplotype 2 V é
oy
1 0 1
Reference
e o= e
Reference SNPi-1 SNPi SNP i+l
Haplotype 4

SNPi-1 SNPi  SNP i+l
Figure 2. lllustration highlighting major differen ces between models based on the Li and
Stephens framework (2003), the basis for MACH, IMPUE and fastPHASE, and the Browning
model (Browning 2006), the basis for BEAGLE. Excers of the models covering three markers
(SNPs i-1, i and i+1) are shown. Ovals are hiddemases of the models. For the Li and Stephens
framework, these states are defined by the referemchaplotypes, while for the Browning model
the states are localized clusters of haplotypes. Mothat the graphical representation of the
Browning model is that given in Browning (2008), whe earlier representations had states as
edges rather than as nodes of the graph. The Browrg model will tend to have fewer states at
any given marker than will unconstrained models basd on the Li and Stephens framework, and
the number of states can vary from marker to markerfor the Browning model but is fixed in the
Li and Stephens framework. Arrows between states fim one SNP to the next are transitions of
the HMM. For the Li and Stephens framework, transitions with highest prior probability (those
seen in the reference haplotypes) are shown with labarrows, while thin arrows allow for
historical recombination. For the Browning model, here are at most k transitions coming out of
a state, where k is the number of alleles at the remarker (i.e. 2 for SNPs), which helps to keep
the model parsimonious. Arrows coming out of the tp of the states are possible emissions of the
HMM, which are the observed alleles. For the Li andstephens framework, emissions with
highest prior probability (the alleles on the refeence haplotypes) are shown with bold arrows,
while thin arrows represent mutations to other allées. The reference haplotypes here are 011,
010, 101 and 001. For the Browning model, there @ly one possible emission from each state,
which helps to keep the model parsimonious. The mets shown are illustrative only. The actual
form of the Browning model will vary depending on he alleles of the reference haplotypes

outside this window of markers.
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A good example is given in Browning and Brownin@@2). They compared the
performance of IMPUTEL1.0 and BEAGLE, in the Well@mifrust Case Control
Consortium (WTCCC) data, which includes approxinya2©00 cases for each of
seven diseases (bipolar disorder, coronary arisgade, Crohn’s disease,
hypertension, rheumatoid arthritis, type 1 diabedes type 2 diabetes) and
approximately 3000 shared controls. The compansau data from chromosome 1
with 53,683 markers genotyped A subset of 24,70&ena was masked and imputed
with either BEAGLE or IMPUT1.0 in 188 individualssing a reference panel of 600,
300 or 60 individuals with full genotypes. Thelauts found that while IMPUTE1.0
was more accurate with smaller reference set S4e8GLE was more accurate
when the reference size was bigger. The allelguacy correlations were 0.990
(BEAGLE) and 0.992 (IMPUTE) with a reference paoi60 individuals, 0.997
(BEAGLE) and 0.998 (IMPUTE) with a reference paokeB00 individuals, and 0.998
(BEAGLE) and 0.998 (IMPUTE) with a reference paoi600 individuals. The
authors concluded that the difference in accuratywéen IMPUTE and BEAGLE is
substantially smaller than the gain in accuracyioletd from using larger reference

panels.

4.3 Including information from pedigree to improve the
accuracy of imputation

There is additional information for phasing, andréfore imputation, if the pedigree
amongst the individuals in the target and refergroqmulations are known. For
example, if a sire has large number of offspririg,genotypes can be phase into
haplotypes by simply counting the alleles acrossiarkers that occur together
(allelic co-segregation). Trios, which consistather, mother and offspring, and
sometimes used in human genetics for the same gewrp&/hen this information is
known, the number of hidden states that must beidered can be reduced to four,
corresponding to the paternal and maternal alEié®th the mother and father.
Druet and Georges (2010) extended both BEAGLE astPHASE to take advantage
of pedigree structures more typical of livestocld arop populations, for example
large half sib or full sib families. In their agarch, sires with six or more offspring or

individuals with five or more sibs were phased gsatieleic co-segregation and
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linkage approach. Then these “known” haplotypesewsed in 1) fastPHASE, to
estimate the parameters of the EM algorithm orABLE, to generate the directed
acyclic graph (DAG) describing the hidden statemmgition and emission
probabilities. Either BEAGLE or fastPHASE are thran. In dairy cattle, recent
results suggest that using the pedigree informatidhis way, prior to running

BEAGLE, can improve the accuracy of imputation (Etrpers com).

4.4 An alternative approach to phasing and imputati  on: Long
range phasing

An alternative approach to phasing and imputatsaio iexploit the fact that some
individuals share a recent common ancestor, andftire share long chromosome
segments which are identical by descent. Thisisqularly true of livestock
populations, where some sires have very large nuoflescendants. As described
by Kong et al (2008), this leads to a phasing apgitdased on the key observation
that if animals have non-conflicting homozygote afgpes over a long string of
consecutive loci, they have at least one long hlgpéoin common. This
requirement, of a long string of loci, leads toighhprobability that the common long
haplotype has originated in a common ancestors(@gntical by descent as well as
identical by state). The method proceeds by cdemsig one individual at a time, and
identify either real or “surrogate” parents (if tteal parents are unknown). As
describe by Kon et al. (2008) and Hickey et al1(PQ surrogate parents are
individuals who share a haplotype with the indiatlbeing considered, identified as
those individuals that do not have any opposingdmymgote genotypes with the
current individual. Inference of the phase at dachs for the current individual
within the paternal/maternal haplotype is attemfigdtepping through the
paternal/maternal surrogates until a surrogateusd that is homozygous at that
locus and thus can be used to declare the pha#®e durrogates that are one degree
removed from the current individual cannot be usedeclare phase, eg they are
heterozygous, surrogates of the surrogates arectedl, and so on, until a
homozygote is found, Figure 3. Hickey et al. (20ddmonstrated that using a
modified long range phasing algorithm in livest@apulations led to extremely

accurate phasing, in reasonable computing timaes i§Hikely because livestock
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populations have relatively small Ne, so large segsiof chromosome are shared
between individuals.

Erdés 2 Surrogate Mothers

Surrogate

giving phase

infermation

11111110111111110000111110
Potentially many' meiosis separating
Erdos 7 Surrogate Fathers Erdos f Surrogate Mothers
101([]1 11011100111001110011 {)[)[)1{)0111 10010101100110011
101001 11011100111001110011 Surrogate 00010011110010101100110011
giving phase

101([]1 11011100111001110011 {)[)[)1{)0111 10010101100110011

‘ Potentially many meiosis separating ’

Father Mother
1010071 1101110011 10011 10014 00010011110010101100110011
Proband

10100111011100111001110011

00010011110010101100110011

Figure 3. From Hickey et al. (2011). lllustrationof the long range phasing
process.

As demonstrated by Daetwyler et al. (2011), anckeéldpers com) the principle of
comparing long stretches of chromosomes betweewididls to identify common
segments can also be used to impute and phasegqgsiotypes. They
demonstrated this approach gave more accurate atipuiresults than fastPHASE in
a dairy cattle population, in a fraction of the qarting time.3.
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4.5 Results of imputation in livestock populations.

In dairy cattle, accurate imputation from low déypsnarkers to 50K SNPs has been
described by a number of authors. Weigel et &l1Q2 evaluated the accuracy of
imputing up to 43,385 SNP in Jersey cattle, wheh, i, 5, 10, 20, 40, or 80% of
these loci were genotyped in a target populatidath IMPUTE2.0 and fastPHASE
were used for imputation. They found the accudaynputation was low (<0.80)
when fewer than 1,000 SNP are used, but when £00®were used the accuracy of
imputation was 0.95. In a follow up paper, Weigeal (2011) assessed the effect of
imputation on the accuracy of genomic estimateedirg values (GEBV). They
concluded that provided the target population wesotyped for at least 3000SNP,
with imputation to 43,000 SNP, GEBV were predictath an accuracy of 95% of
what was possible with the real 43,000 SNP. Th&y demonstrated that using the
imputed genotypes resulted in GEBV that were apgprately 5% more accurate than

using the 3000 SNP alone, without imputation.

Similar results for the accuracy of imputing 3, NP to approximately 50,000 SNP
have been found in Holstein-Friesian dairy cat@dang and Druet (2010) reported
error rates of 3-4% in this situation using DAGPHA®ruet and Georges 2009),
though their main conclusion was that the accucdaésnputation was dependent on
the genetic relationship between the target indi@icnd the reference population
(discussed below). Dassonneville et al. (201i)guhe same method observed
similar error rates when imputing 3K to 50K in Epean Holstein cattle, and went on
to demonstrate that the loss in accuracy of GEBWguthe imputed genotypes rather
than 50K genotypes was only 0.02. Daetwyler g28l11) reported slightly higher
error rates with their implementation of the loagge phasing algorithm, although
the used as smaller reference population, andigoeithm outperformed fastPHASE.

Using BEAGLE in the same population gave errorgatie5%.

Another interesting potential application of impida was demonstrated by Druet et

al. (2010), where two populations, each genotypeddparate panels of
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approximately 28,000 SNP, and overlapping by apprately 9,000 SNP were
imputed up to 60,000 SNP with very low error rdteste that in this study all animals
were actually genotyped with 60,000SNP, but thelteslo demonstrate the
possibility of meta-analysis of populations genetypvith different SNP panels.

In pig and chicken breeding, moderate sized fblifamilies are the norm. In such
populations, another imputation strategy is possihereby parents are genotyped
for a dense (say 50K) marker panel, and the ofigpsre genotyped with a very low
density marker panel (say 384 SNP), as outline &lyiét et al. (2009) Given the
limited number of recombinations that occur betwparents and offspring, this very
limited number of markers is sufficient to determinhether progeny have inherited
maternal or paternal chromosomes from each paidm.rest of the markers can then
be “imputed” if the haplotypes of the parents amewn. Habier et al. (2010)
demonstrated this very low cost strategy couldltésyrediction of genomic
breeding values with accuracies nearly as hightag iprogeny had been genotyped
for the full 50K SNP. This strategy is now beirgged in pig and chicken breeding

programs (Dekkers, pers com).

In sheep, few results have been published. Hayals @011) reported fairly low
accuracies of imputation in three sheep breedsijtadlith very small reference
populations (80 to 200). Accuracies of imputing0@® SNP from 5,000 SNP was
80% for Poll Dorsets, White Suffolks and Borderdesters. For Merino sheep, even
though a much larger reference set was used, tueagy of imputation was only
71%, likely due to the very large effective popidatsize for this breed (see below).
While imputation is likely to be an important sggy in crop species, no results have

been published to date.

4.6 Factors affecting accuracy of imputation

4.6.1 Size of the reference population.
It is critical that the reference population iggarenough to capture all the haplotypes

in the population. If a target haplotype is endewed which has not been previously
observed in the reference population, the imputatiomissing genotypes is unlikely
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to be accurate. The size of the reference isiaiportant for other consideration — in
fastPHASE for example, haplotype (actually clustexjjuencies are used in the
model, and these will be inaccurately estimateth witow number of markers. In
BEAGLE, the accuracy of imputation is very deperdenthe size of the reference
population as this determines how well the direetegtlic graph (DAG) describes
the population. If the reference is too smally¢hmay be haplotypes in the target
which are not represented in the reference, saltbles on these haplotypes will be
poorly imputed. Browning and Browning (2009) dersivated that increasing the
size of the reference had a large impact on theracyg of imputation, as was larger

than the differences between methods.

4.6.2 Density of markers and effective population size.

If the markers are not sufficiently dense thatehisrsubstantial linkage
disequilibrium between them, the methods using [ajmn level algorithms (eg
MACH, BEAGLE, IMPUTEZ2.0, fastPHASE), will performevy poorly. This is
because haplotypes encountered in the referencleaghotypes encountered in the
target population, although they have a limited banof alleles in common, could be
identical by chance rather than identical by chasoehe identity of the missing
marker alleles in the target does not match thos$kea full genotyped animals. In
dairy cattle population, linkage disequilibriumsigfficiently high (due to the low
effective population size) that 3K SNP can be usddchpute 50K with low error
rates, provided the reference population is séffity large. However in a number of
sheep breeds, the same number of markers cansatbessfully used for imputation
using population based methods, as the level k&t disequilibrium is too low, a
result of higher effective population size tharairy cattle (eg. Hayes et al. 2011).
Even if the marker density is too low for succeksfiputation using the population
algorithms, within family linkage can still be exgld in some situations to obtain
accurate imputations (eg. Habier et al. 2009).

4.5.3 Genetic distance from the reference population.
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Particularly when imputing from low marker denssti@g 3K to 50K), the accuracy
of imputation is likely to be highly dependent ¢ve igenetic distance of the target
individual from the reference population (eg Zhamngl Druet 2010). If for example
the individual has a sire in the reference, hisaar3K marker haplotypes will be
readily identifiable among the 50K haplotypes. Hwer if the individual does not
have a sire, or a more distant relative in theregfee, the chance his or her 3K
haplotype has previously been observed (withoetrveining recombination)
diminishes rapidly. In a sheep population, Haytesl.2011) demonstrated that 64%
of the variation in accuracy of imputation amongyéd individuals was accounted for

by average genetic relationship to the reference.

Allele frequency Another reason for using a large reference il is to ensure
rare alleles are captured, and can be accurat@lyted into the target individuals.

For rare alleles, the probability of imputing the@rect genotype by chance is high, as
the majority of the individuals will be homzogygoadias the common allele. However
if the accuracy of imputation is corrected for Hmmzygosity of the markers, it is
clear that the accuracy of imputation is actuallyér for rare alleles, Figure 4.
Another way of interpreting this is to think of tbensequences for GWAS
association study. If an allele is rare, the nundfg@phenotype observations on that
allele is low. If a significant proportion of theesre actually incorrect due to the

imputation, the already limited power will be gigatduced.
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Figure 4. From Hayes et al. (2011). Proportionfanaximum possible
imputation accuracy that was achieved (50K to higldensity genotypes) by minor
allele frequency, in a terminal sire sheep breedThe proportion of maximum
possible imputation accuracy was calculated as theccuracy of imputation that
was achieved minus the accuracy of imputation thawould be achieved by
chance, that is random sampling of genotypes condnal on genotype
frequencies for each marker divided by one minus th accuracy of imputation

that would be achieved by chance.

4.6.4 Why does imputation lead to more statistical power?

An obvious question is, if there is already enoubormation in haplotypes of low
density markers to accurately impute up to higlerstty markers, why would the
imputed genotypes add any power to genome wideias®m studies or increase the
accuracy of genomic estimated breeding values? e®@planation is that while testing
the haplotypes themselves would require a facttdr multiple levels, with degrees of
freedom lost corresponding to the number of haplkedyl, testing a SNP with two

alleles leads to the loss of only one degree @fdoen.
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Further, if the GWAS is done across breeds, th&kenatensity may be such that
imputation is from the sparse markers is only gmeswithin breeds (eg the
haplotypes only persist within breeds), this cale the same SNP allele being
imputed across breeds, such that an across braechtebe carried out.

81



5. Genome sequencing for genomic selection and
Genome wide association studies

This short chapter suggests some potential advesitaigusing whole genome
sequence in genome wide association studies amhgeselection. As there are
very papers or results with full genome sequente, diae suggestions here should be
considered hypothesis for testing, rather thanltebased on evidence. This area is
unfolding very rapidly, so some of the ideas praobselow may well be out of date

shortly after the time of writing (2011)!

5.1 Motivation

If all the individuals in a population could be seqced, all the genomic variants in
the population would be captured. This include$SNsmall insertions and deletions,
and copy number variants (CNVs). Why would thiedfé genome wide association

studies and genomic selection?

For genome wide association studies, the advamgag®vious. If full sequence data
is used rather than a panel of SNP markers, treeadtual mutation affecting the trait
will be present in the data. So potentially, th& &S could lead to direct
identification of the causal variant. In practigegre may be other variants in
complete LD with the causal variant, so that fumeal information has to be used to

refine the candidates.

For genomic selection, the advantage of usinggeiome sequence data is less
obvious. If genomic predictions are already based large number of SNP in high
LD with QTL, using full genome sequence may not adeth to accuracy and may
with some methods in fact decrease accuracy, dherery large increase in the
number of effects that need to be estimated frorhgpes the same number of
phenotypic records. However, the sequence datd amerease the accuracy of
genomic predictions in a number of situations

1) If LD between the QTL and SNP is incomplete. lis gituation, the full QTL

effect is captured only by the sequence data ahythe SNP data (as the
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2)

3)

actual causative mutation is now in the data sehjs is especially likely if
some of the QTL alleles are very rare, while thgomtg of the SNP alleles on
the widely used arrays have quite high minor alledgquencies. Meuwissen
and Goddard (2010), using simulation, demonstratg% increase in
accuracy from using full sequence data over thee&rSNP panel they
simulated

If genomic predictions are made across breedsnuilii-breed populations,
using full sequence data is likely to be partidyladvantageous, as there is no
longer the need to rely on SNP-QTL associationkvimay not persist across
breeds.

Persistence of accuracy of genomic predictionsth\&rrent marker
densities, for example the 50K SNP array in catitle,accuracy of genomic
predictions decays surprisingly rapidly with eitlgeinerations removed from
the reference set, or genetic distance from thexeate set (Habier et al.
2009). This is because, with SNPs spaced evefikb,@he SNP-QTL
associations break down quite quickly. With fdfsence, the QTL
themselves should underlie the prediction equatiorthat the decay in
accuracy is greatly reduced. In their simulatiosuwissen and Goddard
(2010) demonstrated there was very little decagcituracy over generations
when full genome sequence was used. This is p&atlg important for
expensive to measure traits, like feed conversificiency and methane
emissions, where the cost of updating the prediatiguation could be

prohibitive.

5.2 Which individuals to sequence?

As sequencing is still expensive compared to tis¢ abgenotyping (though this cost
has declined more than one million fold in ten geas is likely to keep declining), it
is unlikely, at the time of writing at least, thhe entire reference population will be
sequenced. Rather, a likely strategy is that ahfemdred or few thousand individuals
will be sequenced, and imputation used to imputevdriants in the sequence
(including SNP, indels and CNV) into the full redece population (eg Meuwissen
and Goddard 2010, 1000 Genomes consortium 2014¢ oBvious way to choose the
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individuals then is to choose those that will maserthe accuracy of imputation, or
equivalently, capture the highest proportion ofejenvariation in the target
population. This leads to sequencing of key ammeestTo choose amonst the
possible ancestors, the following algorithm coutdused (Hayes and Goddard 2007).

Let the number of potential key ancestorsitzad letA be annxn matrix which is the
additive relationship matrix among thenimals in the whole population. Lebe an
nx1 vector with then animals ordered in the same way a#é jrandc, = the average
relationship between animiaand the whole population. Consider a sub matrii of
(Am) containing the relationship between a subsef the animals, to be sequenced,
and letc,, be the equivalent sub vectorofThenp=An,"cn is a vector whosg"
element is the proportion of the genes in the wipoleulation that derive only from
animali amongst then key ancestors arll is the total of the elements pfand is
the proportion of genes in the whole population treive from them key ancestors
(wherel is a vector of 1s). Therefore to select tmancestors that capture the most
genetic variation in the population find the sulibat maximisg’1l. This can be
done either by stepwise regression, which can be 8y finding the single individual
with the largest value of p, choosing the nextvidlial by setting the individual with
the previous highest contribution to Ogp recalculatingy, and so on. A genetic

algorithm can also be used.
An example of the use of this algorithm applieddal data is given in Figure 1 for

the Poll Dorset Sheep breed. Sequencing 50 kegstors would capture 35% of the
genetic variation in this breed.
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Figure 1. Proportion of genetic diversity (as meased by pedigree), captured by

subsets of groups of rams, ranked from the most teast influential.

5.3 Imputation of full sequence data

Once a subset of individuals, perhaps the key amsesre sequenced, the next task
is to impute the variants that occur in the segaento the reference population for
GWAS or genomic selection.

The first step is to sequence a reasonable nunilbedividual, then variants are
identified between the individuals and betweentitee chromosomes (paternal and
maternal) of the individuals, followed by callin§genotypes in the each sequenced
individual. To identify variants and call genotgpéhe properties of the sequence
data must be taken into account. While it is belythre scope of this chapter to fully
describe these and algorithms that have been osehi$ purpose, the properties of
the sequence data that must be dealt with areblarcaverage of each base in the
genome, and variable quality of the sequence dlte. variable coverage arises
because of the process used to sequence genomels,isvto shatter each genome
into small pieces (perhaps 150bp long), sequeresettand then align the reads to a
reference genome (a genome that has been assepnégolisly). The probability

that each small piece of genome is sequenceddenanand many genome locations
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are sequenced multiple times. When the readdigresd to a reference genome, this
results in a depth of coverage (the number of tieeeh base is sequenced) which is
approximately poisson distributed, with mean th@meoverage set by the laboratory
(“the depth of sequencing”). For example, if therage fold coverage is 4, then
1.8% of the genome will not be covered at all @@) = 4e*/0!). One of the major
challenges for calling variants, and genotypetas for truly heterozygous sites, the
probability that both alleles are observed in thguence data is low at low fold
coverage. A further challenge is the high ratsemjuence errors, these occur
approximately one every hundred base pairs withlliliina technology at least.
Algorithms have been devised to take both sourtesror into account when calling
genotypes from the sequence data. The best dgarigive probabilities of each
genotype (for example AA,AT and TT) at a putatiaiant for each individual,

rather than an absoloute genotype call. Theseapilities take into account the depth
of sequence reads, the quality of the reads atdbation. A recent paper (Danecek
et al. 2011) describes software implementing sucalgorithm. The 1000 Genomes
paper (1000 Genome consortium 2011, supplemergading is also recommended

reading here.

Population level information can also be used toaase the accuracy of calling
genotypes from the sequence data. Both MACH antl(BE, described in the
Chapter 4.0, have been modified to take in genopypbabilities calculated from
sequence data, run imputation and therefore expbqtlation level information to
improve the accuracy of genotype calls. Againhlibese approaches are well
described in the 1000 Genomes consortium paped28upplementary methods.

Once the genotypes have been called in the sequaticeluals, they can be used as
a reference population for imputing the variantthe sequence into the group of
animals with 50K or 800K genotypes. This can beedasing any of the imputation
programs, provided they are computationally effiti@as the number of variants is
likely to be very large! Note that it may be wantthile to use genotype probabilities

here rather than absolute genotypes, to accouainfpuncertainty in imputation.
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5.4 Methods for genomic prediction with full sequen ce data

Once the variants in the sequence data have bgrrtigchinto the animals with SNP
array genotypes and phenotypes, a prediction equesin be derived. The question
is which genomic prediction method is appropriatethis data? At the time of
writing, this question had not been answered ihdata, so what follows is
speculation. If we assume that quantitative traiescontrolled by perhaps a few
thousand loci, then we would like our genomic pcedn method to attribute effects
to these 1000s of loci, and set the rest of thecesfof the variants (which may be in
LD with the causative mutations, but are not thesesive mutations themselves, to
zero. In this case, a BLUP method, which assumeeffect of all variants is small,
non zero, and normally distributed, is inapprogriad method such as BayesB, or
BayesCpi, which allow for a large number of variafiects to be set to zero, would

seem to be a much more appropriate method.

In their simulation of a population with sequenegag with a tens of QTL, and very
large number SNP, Meuwissen and Goddard (2010) dstnaded very considerable
advantage in the accuracy of GEBV for BayesB ovddB (up to 40%). However it
must again be pointed out that this is simulated,dad the methods need to be

tested in real data set.

5.5 An example of using full sequence data. Ageno me wide
association study in Rice.

An elegant example of the power of a genome widea@ation study with full
sequence data was provided by Huang et al. (2@&h6me wide association studies
of 14 agronomic traits in rice landraces”. A kelyvantage they had was they were
using inbred lines, so there were no heterozygeustypes for any variant in the
data, so very low coverage sequencing could be. uBkdy sequenced 517 rice
landraces (inbred lines!) at only 1x coverage. sehaes represented ~ 82% of
diversity in the world’s rice cultivars. Each limas well characterised for 14
agronomic traits including grain yield and growétes. The sequence from each line

was stacked, or piled up, for the calling of sequegvariants. 3.6 million SNP were
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detected in these pileups. However, with 1x cayeréhey could only call genotypes
at ~ 20% of the SNP for each landrace. So imprtatias used to fill in the missing
genotype. Then GWAS were performed for each ofrties using the 3.6 million
imputed genotypes in the 517 lines. The authonsohstrated that they found already
known mutations with effects on some of thesedrailace a host of new mutations

with very significant effects for future investiga.
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6. Practical Exercises

6.1 Haplotyping with the PHASE program

The above exercise assumes that the genotypestobeanal have already been
sorted into haplotypes. In a real data set, tliliswt be the case. If the population
has large half sib family structure, resolving gfemotypes is relatively
straightforward. In some situations pedigree imfation may no be available, or you
may deliberately choose to randomly sample anifnais the population for LD
mapping. With this type of data it is possiblaus® the PHASE program (Stephens et
al 2001). The program is available for free dovaalat
http://www.stat.washington.edu/stephens/softwand.ntNote that the program is

only designed to resolve short range haplotypes)auy markers in a single cM.

Exercise 3.2.1. Haplotyping with the PHASE program

The casein genes in goats are good candidateaffioolring a mutation affecting
milk production, as casein constitutes around 80%aprine milk protein. You have
found 10 SNPs in the goat casein genes, and waatrtdhe genotypes into
haplotypes for LD analysis. 205 goats have beeotgped for the 10 SNPs.

The PHASE input file (goat_geno.txt) has the foliogvformat:

205
10
P 264 866 888 1105 1169 1379 1470 6075 6091 9889
SSSSSSSSSS
38362
A C G G G C G T C C
C G G G C G T C C
38393
A C G G G T G ? ? T
A C A A A C A ? ? C
38421
A C G ? G T G ? G T
A C A ? A C A ? C C
38452
? C G G G T G T ? C
? C A A A C A C ? C

Where the first line is the number of animals ie #malysis, the second line is the
number of SNPs, the third line is the positionhef SNPs (begin this line with P) in
bases, the next line is the type of marker for eaalker (S=SNP,M=microsatellite).
Missing alleles are coded as ?.

Then for each animal, there is an ID, followed by genotypes at each SNP
Markerl allelel, marker2 allele 1 .....
Markerl allele2, marker2 allele 1......

To run the phase program, you will need to typefdliewing:
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PHASE <filename.inp> <filename.out> <number ofatens> <thinning interval>
<burn in>.

For the data set goat_geno.txt, 100 iterations thitming interval 2 and burn in 10
iterations should be sufficient.

Run the PHASE program. Go to output file. How snanique haplotypes are there?
Do they have the same frequency in the population?.

The PHASE program usually predicts a number ofdtgpes with very low
frequency. What we want to now if the probabithgt these haplotypes really exist.
So, take one of the rare haplotypes from the *fiteit Then, in the *.pairs file, you
can see the probability for each animal of carnangertain haplotype configuration.
Are you satisfied that your rare haplotype reakists?
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6.2 Estimating the extent of linkage disequilibrium

The GOLD program (for Graphical Overview of Linkagesequilibrium) calculates
linkage disequilibrium statistics from haplotypeaal§Abecasis and Cookson, 2000)
The statistics calculated are B(which the authors call delta) and D’. The program
also gives a nice graphical picture of the extétin&age disequilibrium. The
program is freely available frottp://www.sph.umich.edu/csg/abecasis/GOLD/

We will use thenaploxt program from GOLD to calculate the extent of ligka
disequilibrium between pairs of SNPs in practicdl 5The inputs to the program are
marker haplotypes (eg output from the phase progesmtt a map of the markers.

The file map.gm should look like (the header musirzliuded):

MARKERID NAME  LOCATION
1 SNP1 266
2 SNP2 864
3 SNP3 888

You can create this file from the positions linghe file goat_geno.txt
Next you will need to create a file with a listledplotypes, called HAPLO.LST.

The format of this file is:

HAPLO_1 1112121
HAPLO 2 1221212
HAPLO_3 2112100

Eg. one line for each haplotype. You can createfile from the list of best pairs
from PHASE, using excel for example. Note thaPHASE, we have used A,C, T
and G to code the SNP alleles. These must becexplaith 1,2,3 and 4 in the *.Ist
file. Save your file to a location on your c: drivIf you used excel to create the file,
save it as a text file, and then remove the .tie¢resion.

Open a DOS window, and go to the directory contginhe *.Ist file. Run the
programhaploxt in this directory by typindpaploxt.

The program will produce a file called LD.XT. Thagable of LD values for each
marker pair. Open this file. Plot the values Bda® against each other in excel. Is
the value of D’ usually larger or smaller thaf r

Now open the gold program (click on the gold icohpad the disequilibrium data
(the file you have just produced, LD.XT). The Iahd map file (map.gm). View the
LD across the segment with the delta squared ttati&re there any regions of very
high LD? Why do you think this is? In general,atfs the relationship between
distance between the SNPs and LD? Are there argpérns to this across the
chromosome segment?
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Another useful program in the GOLD packagklimax. This program estimate$ r
values from genotypes. So there is no need tmhga the data first. The “cost” of
using this program could be less accurate estindtés/alues. To investigate the
effect of using genotype data to estimatave will use the genotype data from
practical 5.1 The data format for Idmax is

<famid> <pid> <fatid> <motid> <sex> <genotype 1> .. . <genotype_n>

<famid> is a unique identifier for each family, and witl@ach family<pid> is a
unique identifier for an individuakfatid> and<motid> identify the individuals
father and mother (if this line refers to a foundbkese should be set to zereex>
denotes the individuals sex, using the conventemdle, 2=female. Each
<genotype>is encoded as two integer allele numbers. Thegpeelicolumns should
be separated by spaces.

An example pedigree file fragment, describing gleimuclear family genotyped at 3
markers would be:

1001001121212
1002002121212
1003121112211

This describes a family (labelled 100), contains faunders (1 and 2), and their
single offspring (3). The founders are heterozygatua!l marker loci, while the
offspring is homozygous at all loci.

In the case of the goat genotype data, we willmssall animals are founders. The
input file forldmax, gtdt.pedhas already been made for you. First rename your
LD.XT file so you don't lose it. Then run tth@max program, which also produces
the file LD.XT. Now plot the delta*2 values framaploxt andldmax (using excel

for example). How similar are they? Do you thidknax is giving reliable estimates
of I in this case?
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6.3 Power of association studies

As we discussed in section 2, the power of assoniatudies depends on tHe r
between the QTL and the marker we are trying teadehe QTL with, the frequency
of the rare allele of the marker and the QTL, thmhber of phenotypic records, and
the significance level we are testing the assamniadt.

There is a program which calculates the power aisaociation study given all these
parameters called IdDesign. The package is writtéhe R language.

By way of background, R is a free software envirentrfor statistical computing and
graphics. It compiles and runs on a wide varietyNiX platforms, Windows and
MacOS. We will use R in a windows environmentprvides a wide variety of
statistical (linear and nonlinear modelling, claaéstatistical tests, time-series
analysis, classification, clustering, ...) and &iagpl techniques. There are a very
large number of “packages” available for R, and ohthese is the ldDesign pack.

Before we use this design pack, lets take a motoeyet acquainted with R. We will
use a simple example of multiplication of two maes to obtain another matrix.

Open the R graphical user interface by clickingtor¥ou should see the command
prompt.

Lets multiply two matricies a and b to get a thindtrix c.

The matrix a is a two by two matrix with elements:
11

22

The matrix b is a two by three matrix with elements
122

234

We can input these matricies into the computer nrgras:
> a <-matrix(c(1,1,2,2),ncol=2,byrow=TRUE)
> b <-matrix(c(1,2,2,2,3,4),ncol=3,byrow=TRUE)

To check the dimensions of a and be are correet typ
> dim(a)
> dim(b)

You can print a matrix at any time, eg
> print(a)

Now lets multiple matricies a and b to get a newwrixa:
> ¢ <- a%*%b (%*% is the symbol for matrix muligation)

Check the dimensions of ¢ are correct,

> dim(c)

And that the ¢ matrix has the correct elements:

> print(c) (you can compare this to the resukxeel for example)
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A matrix can be transposed using t(a), eg
>d <-t(a)

Now we will return to the IdDesign package. Hi tipackages” button on the top of
the screen. Then click load pacjages and clickibesign. If the package does not

appear, you can install it by typing
> install.packages("ldDesign")

Then the package can be loaded.

The documentation for the IdDesign package carmbed here:
(http://bg9.imslab.co.jp/Rhelp/R-2.4.0/src/libradidesign.htm)

We will use thduo.ld.power function in the IdDesign package. This function
performs a classical deterministic power calcutafar power to detect linkage
disequilibrium between a bi-allelic QTL and a biedt marker, at a given
significance level in a population level associatsbudy. This is based on the ‘fixed
model' power calculation from Luo (1998, Heredi@; 898-208), with corrections
described in Ball (2003).

To run the function:
> |uo.ld.power(n, p, g, D, h2, phi, Vp = 100, alpha

Where:

- n The sample size, i.e. number of individuals ¢gped and tested for the
trait of interest

- p Bi-allelic marker allele frequency

- g Bi-allelic QTL allele frequency

- D Linkage disequilibrium coefficient

- h2 QTL "heritability', i.e. proportion of total or photypic variance explained
by the QTL

- phi Dominance ratio: phi = 0 denotes purely additpld,= 1 denotes purely
dominant allele effects

- Vp Total or phenotypic variance: and arbitrary vahey be used

- alphaSignificance level for hypothesis tests

The function returns the power, or probability etetting an effect, with the given
parameters, at the given significance level.

One problem we will have is that the program ta®an input D instead of which
is more useful to us. We can run the programdesired level ofrbetween the

marker and QTL by inputting for the value @ = \/ p- p)(q@l-qg)r® where p and
g are defined above.

For example, if we want to evaluate power at allef/€ of 0.2, with p=q=0.2, we
would use a value oI/O.Z* 1-02)*02*(1-02)* 02 =0.072. Now say we have

n= 500 phenotypic records, the QTL explains 2.5%hefphenotypic variance, the
QTL is purely additive (phi=0), and alpha is 0.05ssume of a value of Vp of 100,
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though the value assumed will not affect the calbohs. Then the power of the
experiment is:

> |uo.ld.power(500, 0.2, 0.2, 0.072, 0.025, 0, 1MO5)
Which should return a value of 0.277.

Now run the program with 1000 phenotypic records,
p=g=0.2,h2=0.025,phi=0,Vp=100 an alpha =0.05 febr1,0.2,0.3-1.0.

You can either do this by calculating the valu®ddt each level of r2 and rerunning
the program, or you can write a small “script” winloops through the values of r2.

You can write such a script in notepad. The senght look like:

# Script to calculate power at different levelsaf

# Script to calculate power at different levels of r2.
n <- 1000

p_val <-0.2

g _val<-0.2

h2 <- 0.025

phi <- 0

Vp <- 100

alpha <- 0.05

for (iin 1:10) {

r2 <-i/10

D <- sqgrt(p_val*(1-p_val)*q_val*(1-g_val)*r2)

luo.ld.power(n, p_val, g_val, D, h2, phi, Vp, alph a)
}

Save your script with a *.R extension, eg powerl®.open the script, click the file
tab and select “open script”. You can run thepgdyy clicking the edit tab and
selection “Run all”.

At what level of f does the power reach 0.9 with these parameteos@eférmine
this, you can plot the power against the levefari lexcel for example.

Now plot the power with 500 and 2000 records ag.wathat does the level of r2
need to be to get a power of 0.9 if 500 recordsuaesl. If 2000 records are used?

The next exercise is to determine the number ohptypic records necessary to
detect a QTL with power 0.9 with different levefsrd You can do this by looping
through different numbers of phenotypic recordsréments of 100 for example) in
your script and keeping th&constant. Plot the minimum number of records irequ
to reach a power of 0.9 with=0.1,0.2,0.3,0.4....1.0. (e§on the x axis, and number
of phenotypic records required to reach a powé.®fwith this level ofTon the y
axis).

Do the results agree with the statement that tiebewn of records must be increased
by a factor of 1/in order to achieve the same power as observ@ffL itself?
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6.4 Genomic selection using BLUP
In this practical you will perform genomic selectim a small data set using BLUP.

The data set consists of a reference populati@2bfbulls with daughter yield
deviations (DYDs) for protein %. This phenotypeirsaccurate predictor of
genotype, eg the heritability is close to one. bhks have been genotyped for 10
SNPs.

Then there are a set of 31 calves who are selectindidates for this years progeny
test team. They are genotyped for the same 10ar&arkfour task is to predict
GEBY for these 31 selection candidates. To dowlsvill need to predict the effects
of the 10 SNPs in the reference population, usiegeguations:
O

1nlln 1nlx L - 1nly

X1, X X+In 5 X'y
Where g are the SNP effects, 1n is a vector of @5 x 1,X is a design matrix
allocating SNP genotype to recorgss the overall mean. We will use R to solve

these equations. Thématrix has already been built for you, and is aordd in the

file xvec_day4.inp. The y matrix is contained e file yvec_day4.inp.

What you need to do is write a small R script tvathe equations. This can be done
by starting the script in notepad, then opening the R console.

The first lines should declare the parameters numobmarkers and number of

records. A this point we will also specify the walof lamda as 10.

nmarkers <- 10 #number of markers
nrecords <- 325  #number of records
lamda <-10 #value for lamda

Next we will read in the files. Change the pathh® location where you have stored
the files. Note that these statements shouldeatirbone line. Have a look at these
files before opening them.

X <-

matrix(scan("d:/iowacourse/practicals/day4/realData Example/xvec_day4.
inp"),ncol=nmarkers,byrow=TRUE)

y <-

matrix(scan("d:/iowacourse/practicals/day4/realData Example/yvec_day4.

inp"),byrow=TRUE)
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So now we have the matrix x, the vector y. We s&kd a vector of ones and a

identity matrix dimension number of markers x numbfemarkers.....

ones <- array(1,c(nrecords))
ident_mat <-diag(nmarkers)

The next step is to build the coefficient matrikiis can be done in blocks, eg....

coeff <- array(0,c(nmarkers+1,nmarkers+1))
coeff[1:1, 1:1] <- t(ones)%*%ones
coeff[1:1,2:(nmarkers+1)] <- t(ones)%*%x

You will need to build the other blocks. You wallso need to build the right hand
side of the equation.

The solutions can be obtained easily by usingribailt function solve,

solution_vec <- solve(coeff,rhs)

Print out this vector of solutions (eg print(soduti vec)). What is the solution for the
mean? Which SNP has the largest effect?

Next we want to print GEBV for the selection caradas. This is done with the

equation:

m]
GEBV =Xg

The g_hat are the solutions for the SNP effectshaue just solved. The xvector for
the selection candidates is in the file xvec_pmg.iCan you write a small R script to
calculate the GEBV?

Fours years later, all the selection candidatesive@ phenotypic record from a
progeny test. The results are in the file yvecgpnp. What is the correlation
between your GEBV and the TBV? (Don'’t expect thi®e to high with only 10
SNPs).
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6.5 Genomic selection using a Bayesian approach
For the first exercise, we will analyse a smalbdsgt using the method BayesA of

Meuwissen et al. (2003). We will analyse the deta a script written in the R
language, meuwissenBayesA.R. The script consglegie markers rather than
marker haplotypes, but would be easy to extendpbdtypes. The script estimates
single marker effectg], a variance for each of these effegpgaf), and overall mean
mu and the error variancedre). A description of the program is given here

(descriptions in bold).

R coding of genomic selection from Meuwissen et §2001)

Set the number of markers, the number of markers ad the number of #
iterations

nmarkers <- 3 #number of markers
nrecords <- 25  #number of records
numit <- 1000 #number of iterations

The next section reads in the data from two filesThe first is the x vector, with -
0 for the 1 1 SNP genotype, 1 for 1 2 and 2 for 2 Zhe second file is a vector of
phenotypic records. Set the path to the locationfgour files.

X <-

matrix(scan("d:/iowacourse/practicals/day5/smallExa mple/xvec.inp"),nc
ol=nmarkers,byrow=TRUE)

y <-

matrix(scan("d:/iowacourse/practicals/day5/smallExa mple/yvec.inp"),by
row=TRUE)

Set up some storage vectors and matricies to stgparameter values across
iterations

gStore <- array(0,c(numit,nmarkers))
gvarStore <- array(0,c(numit,nmarkers))
vareStore <- array(0,c(numit))

musStore <- array(0,c(numit))

ittstore <- array(0,c(numit))

The Gibbs cycles begin.

Step 1. Initialization of g and mu, declaration ofother arrays.

g <- array(0.01,c(nmarkers))
mu <- 0.1

gvar <- array(0.1,c(nmarkers))
ones <- array(1,c(nrecords))

e <- array(0,c(nrecords))
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Begin the iterations

for (1'in 1:numit) {

Step 2. Sample vare from an inverse chi-square p@sior
e <-y - x%*%g - mu # First calculate the vector of residuals
vare <- (t(e)%*%e)/rchisq(1,nrecords-2)

Step 3 Sample the mean from a normal posterior

mu <- rnorm(Z1,(t(ones)%*%y -
t(ones)%*%x%*%g)/nrecords,sqrt(vare/nrecords))

Step 4. Sample the gvar from the inverse chi squarposterior

for (j in 1:nmarkers) {

# gvarlj] <- (0.002+g[j1*g[j]D/rchisq(1,4.012+1) # Meuwissen
#et al. (2001) prior
# gvarlj] <- (g[il*glil)/rchisq(1,1) # Xu (2003) #prior
gvar[j] <- (g[jl*alj])/rchisq(1,0.998) # Te Braak et # al.
(2006) prior
}

Step 5 Sample the g from a normal distribution
z <- array(0,c(nrecords))
for (j in 1:nmarkers) {
gtemp <-g
gtemp[j] <- 0
for (i in 1:nrecords) {
z[i] <- x[i.j]

mean <- ( t(z)%*%y-t(z)%*%x%*%gtemp-t(z)%*%0 nes*mu ) /
(t(z)%*%z+vare/gvar[j]) # Calculating the mean of the distribution

g[j] <- rnorm(1,mean,sqrt(vare/(t(z)%*%z+var el/gvarfj])))

}

The final step in each iteration is to store the pameter values
for (j in 1:nmarkers) {
gStorefl,j] <- g[i]
gvarStore|l,j] <- gvar]j]

vareStore[l] <- vare
musStore[l] <- mu
ittstore[l] <- |

}
This is the end of the program.

Consider a data set with three markers. The dataas simulated as: the effect of a
2 allele at the first marker is 3, the effect & allele at the second marker is 0, and
the effect of a 2 allele at the third marker was The mu was 3 and the vare was 1.

The data set is:
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Markerl Markerl Marker2 Marker 2 Marker3 Marker 3

Animal Phenotype allelel allele2 allelel allele 2 allele 1 allele 2
1 9.68 2 2 2 1 1 1
2 5.69 2 2 2 2 2 2
3 2.29 1 2 2 2 2 2
4 3.42 1 1 2 1 1 1
5 5.92 2 1 1 1 1 1
6 2.82 2 1 2 1 2 2
7 5.07 2 2 2 1 2 2
g8 8.92 2 2 2 2 1 1
9 24 1 1 2 2 1 2
10 9.01 2 2 2 2 1 1
11 4.24 1 2 1 2 2 1
12 6.35 2 2 1 1 1 2
13 8.92 2 2 1 2 1 1
14 -0.64 1 1 2 2 2 2
15 5.95 2 1 1 1 1 1
16 6.13 1 2 2 1 1 1
17 6.72 2 1 2 1 1 1
18 4.86 1 2 2 1 1 2
19 6.36 2 2 2 2 2 2
20 0.81 1 1 2 1 1 2
21 9.67 2 2 1 2 1 1
22 1.74 2 2 2 1 1 2
23 1.45 1 1 2 2 2 1
24 1.22 1 1 2 1 2 1
25 -0.52 1 1 2 2 2 2

The first step is to make the files yvec.inp andxinp. In the case of yvec.inp, this
is simply the list of phenotypes (no headers ontifiers). For xvec.inp, the number
of 2 alleles at each marker for each animal, & @2 matrix. The first line of this

file would be (for animal 1) 210",

Save these files in a convenient location. Nextnajne R graphical interface, and
open the script “meuwissenBayesA.R”. Check theemof markers is set to 3, and
the number of records 25. You will have to chatingepath of the files as well.
Choose a number of iterations, say 1000.

Run the script using the run all command. As tr@sruns, it stores values for g,

gvar, mu and vare for each iteration. After theptdas run, you can use the plotting
facilities in R to investigate changes in the pagters over iterations.
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For example, to look at the effect of the third keatracross iterations, you would

enter the command

> plot(ittstore[1:1000],gStore[1:1000,1])

Use this command to investigate each of the paemat turn, and determine if they

appear to be fluctuating about the correct values.

We can also plot the posterior distribution, foample for the effect of the third

marker. We would discard the first 100 iteratiofshe program as “burn in”:

> plot(density(gStore[100:1000,1]))

Does the distribution appear to be normal? Whatthe distributions of the other

parameters?

To get the mean of the distribution, you would type
mean(gStore[100:1000,1])
Do the means of the parameters agree with thevalue of these parameters?

Now a new set of animals (selection candidatesowitpphenotypes) are genotyped

for the three markers. Their genotypes are:

Markerl Markerl Marker2 Marker2 Marker3  Marker3

Animal allele 1 allele 2 allele 1 allele 2 allele 1 allele 2 TBV
26 2 2 2 1 2 1 4
27 2 1 1 2 2 1 1
28 1 1 1 2 2 2 -4
29 1 2 2 2 2 1 1
30 1 1 2 2 1 2 -2
31 2 1 1 2 2 1 1
32 2 2 2 2 2 2 2
33 2 2 2 2 1 2 4
34 2 2 2 1 1 2 4
35 1 1 1 2 2 2 -4

Calculate the GEBYV for these animals as:

m]
GEBV = Xg
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What is the correlation with the True breeding eal@ (given in the table above,
TBV).

Next we will use the script to estimate SNP effe@ctthe reference population in
practical 5.6. So you will need to read in the atrx in xvec_day4.inp, the y vector
in yvec_day4.inp. The number of markers in thegpm will need to be changed to

10 and the number of records to 325.

Run the script.

The next thing you want to do is extract SNP sohsi After the script has run, you
can do this by typing:

> mean(gStore[100:1000,1])

This will give you the mean value of the SNP effiectSNP 1 from iterations 100 to
1000 (eg, excluding burn in). So for SNP 6 you lddype
>mean(gStore[100:1000,6]).

Compare your SNP solutions from the Bayes progmthdse from BLUP (practical
5.6). One of the reasons for using the Bayesianoggh is to allow different
variances of SNP effect across chromosome segmbnparticular, the Bayes
approach should set some variances (and so SNit¢ffe very close to zero. Does
this seem to have happened? How many QTL wouldsgguare on the chromosome

segment?

Can you predict GEBYV for the selection candidategractical 5.6 using the SNP
solutions from the Bayesian approach? Are theyerhayhly correlated with the
TBV than the GEBV from the BLUP approach?

Now change the R script to use the prior distritnutsf chromosome segment

variances of effects to that of Meuwissen et @0@), eg. x (4.012,0.002. Now

re-run the script. How do the SNP solutions cormpeith those when the Xu (2003)
prior is used? Are the accuracy of the GEBV impd¥
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6.6 Bayesian approach using a prior for chromosome
segment variances with a large weight at zero (Baye sB)

In this exercise, we will modify the BayesA scrigm the previous exercise to
sample from a prior distribution for the chromososegment variances with a large
weight at zero. This incorporates our prior knalge that many of the chromosome
segments will not contain any QTL with an effecttba quantitative trait.

The prior of the variance of chromosome segmesetcsfis now

2
gi

oy ~ x ? (v, S) with probability (1 — «),

as. = () with probability T,

Unlike BayesA, the posterior of the variance ofathosome segment effects does not
have a known distribution and cannot be samplegttyrin the Gibbs chain. We will
therefore implement a Metropolis Hastings (MH) sigfh the Gibbs chain to sample

gvar andg simultaneously.

To modify the code, you will need first specify thember of MH cycles you wish to
do:

# Parameters

nmarkers <- 10 #number of markers
nrecords <- 325 #number of records
numit <- 1000 #number of iterations

propSegs <- 0.66 #Prior proportion of segments h aving a non zero
effect
numMHCycles = 20 # Number of metropolis hastings cy cles when sampling

variance of segments

The next step is to correct the phenotypic rectodall number of MH cycles when
sampling the gvar and g (Steps 4 and 5). We vatesthe corrected records in a

vector called ycorr:

# Step 4. Sample the gvar and g using Metropolis H astings algorithm
(Independance sampling)
for (j in 1:nmarkers) {

# First correct records for all other effects inclu ding mean and
other markers

gtemp <-g

gtempl[j] <- 0

ycorr <- array(0,c(nrecords,1))

Ival <- array(0,c(nrecords,nrecords))

for (i in 1:nrecords) {

ycorrli] <- y[i] - mu

Ival[i,i] <- vare
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for (k in 1:nmarkers) {
ycorr[i] = ycorr][i] - X[i,k]*gtemp[K]

}

In this step we have also built a matrix whichrieaords x nrecords and heare on

the diagonal, as we will need this in the next step

The next step is to calculate the likelihood of daga given the current gvar, before

we sample a new one. The formula for the likelthco

1
2 _
L(y* |Ugi - 27720 |V |1/2

|V] is the determinant &f. In R we can do this calculation as:

e-1/2(ycorr'V “ycorr) whereV = Xi(l ) Xi'+l6Z)and

# Now calculate likelihood with current gvar(j] p(g var[j]lycorr)
going into the chain
V = (xLil*gvar[i))%*%t(x[,j]) +Ival
LH1 <- 1/(2*pi™(1/2*nrecords)*sqrt(det(V)))* exp(-
0.5*t(ycorr)%*%ginv(V)%*%ycorr)
The ginv function calculates the generalised ine@fsV. You will have to load the

R package MASS to get this function. (Load packagehe

It is also useful to calculate the likelihood oéttlata when the gvar is zero, as we will

sample gvar=0 many times in the MH cycles.

# And likelihood if variance is zero

V = lval

LHO <- 1/(2*pi"(1/2*nrecords)*sqrt(det(V))) *exp(-
0.5*t(ycorr)%*%ginv(V)%*%ycorr)

Now we can run the MH cycles, sampling a new gsamparing the likelihood of the
data with the new gvar to the old gvar. If theelikood improves, we will replace the
old gvar with the new gvar. If it does not improwee will replace it with a

probability LH(newgvar)/LH(old gvar). If we do replace gvar, we will also sample
the effect of the SNP with the new gvar.

for (kk in 1:numMHCycles) {
if (runif(1,0,1)<propSegs) { # sample segment variance
from (1-progSegs)*0 + propSegs*chi-square
# Sample new gvar[j] from driver distribution
gvar_new <- 1/rchisq(1,4.012)
V = (X[,jI*gvar_new)%*%t(x[,j])+Ival
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LH2 <- 1/(2*pi™(1/2*nrecords)*sqrt(det(V)) )*exp(-
0.5*t(ycorr)%*%ginv(V)%*%ycorr)

alpha <- min(LH2/LH1,1) # replace gvar wit h prob LH(new
#gvar)/LH(old gvar).

if (runif(1)<alpha) {
# Acceptance

gvarlj] = gvar_new

LH1 <- LH2

}

else { # if zero variance sampled
alpha <- min(LHO/LH1,1)
if (runif(1)<alpha) {
# Acceptance
gvar[j] =0
LH1 <- LHO

}
}

}

if (gvar(i]>0) {

meanval <- ( t(x[,j])%*%y-t(X[,j])%6*%x%*%gt emp-
t(x[,j])%*%ones*mu ) / (t(X[,j])%*%xX],j]+(vare)/gva i

g[i] <-
rnorm(1,meanval,sqrt((vare)/(t(x[,j1)%*%x[,j]+(vare )gvarlj])))

}

else {
gli] <-0
}

}

Once you have finished coding the method, save Roseript as a new file
(BayesB.R for example).

Now run the script with the small data set fromctical 5.7 (3 markers and 25
records) Use 20 MH cycles. Look at the valuespdadifor each of 3 segments
across the Gibbs chain. Do any of ¢hget set consistently to zero? Now choose
different values for the proportion of segmentstsetero and the parameters of the
inverse chi square parameters where gvar new ipledrfrom (both these for the
prior of the gvar). How sensitive are the restdtthe parameters of the prior

distribution of the variances of chromosome segreéfetts?
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