Genomic Selection in the era

of Genome sequencing
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Course overview

Day 1

— Linkage disequilibrium in animal and plant genomes
Day 2

— Genome wide association studies

Day 3

— Genomic selection

Day 4

— Genomic selection

Day 5

— Imputation and whole genome sequencing for genomic
selection




Genome wide association

e Association testing with single marker
regression

e Power of genome wide association
studies

e Accounting for population structure
e LD mapping with haplotypes
e Validation
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Genome wide association

LD mapping of QTL exploits
population level associations
between markers and QTL.

— Associations arise because there are
small segments of chromosome in
the current population which are
descended from the same common
ancestor

- These chromosome segments, which
trace back to the same common
ancestor without intervening
recombination, will carry identical
marker alleles or marker haplotypes

If there is a QTL somewhere within

the chromosome segment, they will
also carry identical QTL alleles 11Q121

The simplest way to exploit these
associations is by single SNP
regression



Single marker regression

e Association between a marker and a trait can be
tested with the model

e Where

y is a vector of phenotypes
1n is a vector of 1s allocating the mean to phenotype,

X is a design matrix allocating records to the marker
effect,

g is the effect of the marker
e is a vector of random deviates ~ N(0,5.2 )

° Underl ing assumption here is that the marker will
onl fect the trait if it is in linkage disequilibrium
wit an unobserved QTL.




Single marker regression

e A small example

Phenotpe SNP allele 1 SNP allele 2
2.030502 1
3.542274 1
3.834241 1
4871137 2
3.407128 1
2.335734 1
2.646192 1
3.762855 1
3.689349 1
3.685757 1
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Single marker regression

e The design vector 1, allocates phenotypes to the mean

Animal Phenotpe SNP allele 1  SNP allele Animal
2.030502 1
3.542274 1
3.834241 1
4871137 2
3.407128 1
2.335734 1
2.646192 1
3.762855 1
3.689349 1
3.685757 1
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Single marker regression

e The design vector 1, allocates phenotypes to the mean

e The design vector X allocates phenotypes to genotypes

X, Number of “2”
Animal Phenotpe SNP allele 1 SNP allele Animal alleles

2.030502 1
3.542274 1
3.834241 1
4871137 2
3.407128 1
2.335734 1
2.646192 1
3.762855 1
3.689349 1
3.685757 1
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Single marker regression

e The design vector 1, allocates phenotypes to the mean

e The design vector X allocates phenotypes to genotypes

X, Number of “2”
Animal F SNP allele 1 SNP allele Animal alleles

2.030502
3.542274
3.834241
4.871137
3.407128
2.335734
2.646192
3.762855
3.689349
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Single marker regression

e Estimate the marker effect and the
mean as:

1'1 1'X]
X'l X'X




Single marker regression
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Single marker regression
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Single marker regression

e




Single marker regression
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Single marker regression

e Estimates of the mean and marker
effect are:

e In the “simulation”, mean was 2, r?
between QTL and marker was 1, and
effect of 2 allele at QTL was 1.




Single marker regression

e [s the marker effect significant?

e F statistic comparing between
marker variance to within marker
variance

e Test against tabulated value for

I:oc,vl,v2

— o= significance value

-v1l=1 (1 marker effect for
regression)

-v2=9 (number of records -1)




Single marker regression

e In our simple example
_Fdata=4'56
—Fo.05,1,0=5.12

e Not significant

F (.05.d1.02)

1 2 3 4 5 7 6 7 8 9 10
161.4476 | 199.5000 | 2157073 | 224.5832 | 230.1619 | 2339860 | 236.7684 | 238.8827 | 240.5433 | 241.3817
18.5128 | 19.0000 | 19.1643 | 192468 | 192964 . 193295 | 193532 . 193710 | 193848 . 19.3959
10,1280 | 9.5521 92766 | 91172 90135 . 89406 | B.3867 . 88452 | 88123 . 8.7855
77086 | 69443 65914 63882 | 6.2561 6.1631 6.0942 | 60410 59988 | 59644
66079 | 57861 54005 | 51922 50503 | 49503 | 48759 | 48183 | 47725 | 47351




Experiment

384 Holstein-Friesian dairy bulls selected from Australian

dairy bull population
genotyped for 10 000 SNPs
Single marker regression with protein%




Results of genome scans with dense SNP panels

* Test statistic protein % P < q
GHR position rOteln 0
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Extent of LD 1n humans and livestock

And cattle......
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Genome wide association

e Association testing with single marker
regression

e Power of genome wide association
studies

e Accounting for population structure
e LD mapping with haplotypes
e Validation




Power of GWAS

e What is the power of an association
test with a certain number of records
to detect a QTL?

e Power is probability of correctly
rejecting null hypothesis when a QTL of

really does exist in the population
- Hy = no QTL
- H; = there is a QTL

e How many animals do we need to
genotype and phenotype?




Power of GWAS

Power is a function of:
— 2 between the marker and QTL

e sample size must be increased by 1/r? to detect an
un-genotyped QTL, compared with sample size for
testing QTL itself
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Power of GWAS

Power is a function of:
— 2 between the marker and QTL

e sample size must be increased by 1/r? to detect an
un-genotyped QTL, compared with sample size for
testing QTL itself

—  Proportion of total phenotypic variance explained
by the QTL
—  Number of phenotypic records




Power of GWAS

Power is a function of:
r2 between the marker and QTL

e sample size must be increased by 1/r? to detect an
un-genotyped QTL, compared with sample size for
testing QTL itself

Proportion of total phenotypic variance explained
by the QTL

Number of phenotypic records

Allele frequency of the rare allele of SNP

e determines the minimum number of records used to
estimate an allele effect.

e The power becomes particular sensitive with very
low frequencies (eg. <0.1).

The significance level a set by the experimenter




Power of GWAS

Power to detect a QTL explaining 5% of the
phenotypic variance, 1000 phenotypic
records
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Power of GWAS

e Power to detect a QTL explaining
5% of the phenotypic variance
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ne publication > Letter > Abstract

Letter abstract

Nature Genetics
Published online: 13 January 2008 | doi:10.1038/ng.74

Common variants in the GDF5-UQCC region are associated with
variation in human height

Serena Sannal212, Anne U Jacksoni-i2, Ramaiah Nagara;a— Cristen J Wlller—
Wei-Min Chent%, Lori L Bonnycastle2, Haiqing Shen®, Nicholas TimpsonZ:E,
Guillaume Lettre2, Gianluca UsalaZ, Peter S Chines2, Heather M Stringham?, Laura
J Scottl, Mariano Dei2, Sandra Lai2, Giuseppe Albai2, Laura CrisponiZ, Silvia
NaitzaZ, Kimberly F Doheny1l, Elizabeth W Pughf, Yoav Ben-ShlomoZ, Shah
Ebrahim’!, Debbie A LawlorZ2, Richard N Bergman , Richard M Watanabe!2:13,
Manuela Uda:, Jaakko Tuomilehtol, Josef Coreshi2, Joel N Hirschhorng, Alan R
Shuldiner®18, David SchlessingerZ, Francis S Collins2, George Davey SmithZ:2,
Eric BoerwinkleZ, Antonio CaoZ, Michael Boehnkel, Gongalo R Abecasis® & Karen
L Mohlke==

Identifying genetic variants that influence human height will

advance our understanding of skeletal growth and development.
Several rare genetic variants have been convincingly and reproducibly
associated with height in mendelian syndromes, and common variants in
the transcription factor gene HMGA2 are associated with variation in
height in the general populatlon Here we report genome-wide
association analyses, using genotyped and imputed markers, of 6,669
individuals from Finland and Sardinia, and follow-up analyses in an
additional 28,801 individuals. We sho hat-cemmon variants jn

osteoarthrltns assocnated locys=GDF5-UQCC contribute o variation in

top #

height and osteoarthrltls, potentlal[y medlated through alterations in bone

< 1% of
phenotypic
variance!




Power of GWAS

Power to detect a QTL explaining
2.5% of the phenotypic variance
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Power of GWAS

e What significance level to use?
- P<0.01, P<0.001?

e We have a horrible multiple testing
problem

— Eg. If test 10 000 SNP at P<0.01 expect
100 significant results just by chance?
e Could just correct for the number of
tests
— But is too stringent, ignores the fact that

tests are on the same chromosome (eg
not independent)




Power of GWAS

An alternative is to choose a significance level with
an acceptable false discovery rate (FDR)

Proportion of significant results which are really false
positives

FDR = mP/n
m = number of markers tested

P = significance level (eg. P=0.01)
n = number of markers actually significant




Power of GWAS

An alternative is to choose a significance level with
an acceptable false discovery rate (FDR)

Proportion of significant results which are really false
positives
FDR = mP/n
m = number of markers tested
P = significance level (eg. P=0.01)
n = number of markers actually significant
Example

10 000 markers tested at P<0.001, and 20 significant.
What is FDR?

FDR=10000*0.001/20 = 50%

Eg. 50% of our significant results are actually false
positives



Power of GWAS
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Genome wide association

e Association testing with single marker
regression

e Power of genome wide association
studies

e Accounting for population structure
e LD mapping with haplotypes
e Validation




Population structure

Simple model we have used assumes
all animals are equally (un) related.

Unlikely to be the case.

Multiple offspring per sire, breeds or
strains all create population structure.

If we don’t account for this, false
positives!




Population structure

Simple example
a sire has many progeny in the population.
the sire has a high estimated breeding value

a rare allele at a random marker is homozygous in
the sire (aa)




Population structure

Simple example

a sire has many progeny in the population.
the sire has a high estimated breeding value

a rare allele at a random marker is homozygous in
the sire (aa)

Then sub-population of his progeny have higher
frequency of a than the rest of the population.

As the sires’ estimated breeding value is high, his
progeny will also have higher than average
estimated breeding values.

If we don't account for relationship between
progeny and sire the rare allele will appear to
have a (perhaps significant) positive effect.




Population structure

e Can account for these relationships by
extending our model.....

y=1"u+Xg+7Zu+e

e Where

— u is a vector of polygenic effects in the model with a
covariance structure u~N(0,Ac,?)

— A is the average relationship matrix built from the
pedigree of the population

— Z is a design matrix allocating animals to records.




Population structure

e Can account for these relationships by
extending our model

y=1"u+Xg+7Zu+e

e Solutions (A=0.%/0,%):

1.'1. 1.'X 1'Z [1'y

X'l X'X X'Z X'y
7’1 Z'X Z'Z+A7'| | Z'y

n




e An example A matrix

Pedigree

Animal Sire Dam

o Ok WN =
—__ A . OO0 0O
WwhhphD OO o



e An example A matrix

Animal 1
Animal 2
Animal 3
Animal 4
Animal 5
Animal 6

Pedigree
Animal Sire Dam
1 0 0
2 0 0
3 0 0
4 1 2
5 1 2
6 1 3
Animal1 Animal2 Animal3 Animal4 Animal5 Animal6

1



e An example A matrix

Animal 1
Animal 2
Animal 3
Animal 4
Animal 5
Animal 6

Pedigree
Animal Sire Dam
1 0 0
2 0 0
3 0 0
4 1 2
5 1 2
6 1 3
Animal1 Animal2 Animal3 Animal4 Animal5 Animal6

’
0

1



e An example A matrix

Animal 1
Animal 2
Animal 3
Animal 4
Animal 5
Animal 6

Pedigree
Animal Sire Dam
1 0 0
2 0 0
3 0 0
4 1 2
5 1 2
6 1 3
Animal1 Animal2 Animal3 Animal4 Animal5 Animal6
1
0 1
0 0 1



e An example A matrix

Pedigree
Animal Sire Dam
1 0 0
2 0 0
3 0 0
4 1 2
5 1 2
6 1 3

Animal1 Animal2 Animal3 Animal4 Animal5 Animal6

Animal 1 1

Animal 2 0

Animal 3 5 ] 1

Animal 4 0 1
Animal 5

Animal 6



e An example A matrix

Animal 1
Animal 2
Animal 3
Animal 4
Animal 5
Animal 6

Pedigree

Animal Sire Dam
1 0 0
2 0 0
3 0 0
4 1 2
5 1 2
6 1 3

Animal1 Animal2 Animal3 Animal4 Animal5 Animal6
1
0 1
0 0 1
0.5 0.5 0 1
0.5 0.5 0 0.5 1



e An example A matrix

Pedigree
Animal Sire Dam
1 0 0
2 0 0
3 0 0
4 1 2
5 1 2
6 1 3

Animal1 Animal2 Animal3 Animal4 Animal5 Animal6

Animal 1 1

Animal 2 0 1

Animal 3 0 0 1

Animal 4 0.5 0.5 0

Animal 5 0.5 0.5 0 0.5 1

Animal 6



e An example A matrix

Pedigree
Animal Sire Dam
1 0 0
2 0 0
3 0 0
4 1 2
5 1 2
6 1 3

Animal 1 Animal2 Animal3 Animal 4 A\nimaIS Animal 6

Animal 1 1

Animal 2 0 1

Animal 3 0 0 1

Animal 4 0.5 0.5 0 1

Animal 5 0.5 0.5 0 0.5 1
Animal 6 0.5 0 0.5

0.25 @ 1




Population structure

e Example

Animal Sire Dam Phenotype SNP allele SNP allele
0 10.1 1
0 2.2

0 2.31
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e Example
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Population structure

e Example

Animal Sire Dam Phenotype SNP allele SNP allele

0 10.1 1

0 2.2 2
0 2.31 2
1 1
1 1
1 1

6.57
6.06
6.21

y=1"u+Xg+Zu+e




Population structure

e Example

Animal Sire Dam Phenotype SNP allele SNP allele
10.1 1
2.2 2
2.31 2
)
’
’

6.57
6.06
6.21

1,'1, 1,'X  1,'Z
X'1, X'X X'Z
Z'1, Z'X Z'Z+A7)




Population structure

e Example

Animal Sire Dam Phenotype SNP allele SNP allele
10.1 1
2.2 2
2.31 2
)
’
’

6.57
6.06
6.21

u+Xg+2Zu+e

A=0.33




Population structure

e Example

Animal Sire Dam Phenotype SNP allele SNP allele
10.1 1
2.2
2.31
6.57
6.06
6.21

m ] 6 8 1 1 1 1 1 1] 1 33.45
U 8 12 1 2 2 1 1 1 37.96
" 1 1 1.825 0.33 0.165 -0.33 -0.33 -0.33 10.1
_ 1 2 0.33 1.66 0 -0.33 -0.33 0 2.2
8= 1 > 0.165 0  1.495 0 0  -0.33 5 31
- 1 1 -0.33 -0.33 0 1.66 0 0 6.57
u 1 1 -0.33 -0.33 0 0 1.66 0 6.06
. 1 1 -0.33 0 -0.33 0 0 1.66 6.21




Population structure

e Example

Animal Sire Dam Phenotype SNP allele SNP allele
10.1 1
2.2
2.31
6.57
6.06
6.21




Population structure

e A simulated data set with a half sib
family structure, one QTL simulated
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Population structure

e A simulated data set with a half sib
family structure, one QTL simulated
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Population structure

Example of importance of accounting for

population structure.......
365 Angus cattle genotyped for 10,000 SNPs
polygenic and environmental effects were
simulated for each animal
No QTL fitted!
Effect of each SNP tested using three models
e SNP only
e SNP and sire
e SNP and full pedigree




Population structure
Number of false positives......... :

Analysis model Significance level

p<0.001 p<0.0005

Expected type I errors 40 8 4

1. Full pedigree model 39 (SD=14) 9 (SD=5) 4 (SD=3)

2. Sire pedigree model 46" (SD=21) 11" (SD=7) 6 (SD=5.5)

3. No pedigree model 68" (SD=31) 18" (SD=11) 10 (SD=7)

4. Selected 27% - full

54" (SD=18) 12" (SD=6) 7" (SD=4)

pedigree




Population structure

Problem when we do not have history of the
population

Solution — use the average relationship
across all markers as the A matrix

Animal 1




Genomic relationship matrix

e Rescale X to account for allele frequencies
~ Wi = Xjj — 2p;

e Then

P
G = WW'/2ij(1—pj)
=1




Genome wide association

e Association testing with single marker
regression

e Power of genome wide association
studies

e Accounting for population structure
e LD mapping with haplotypes
e Validation




LD mapping with haplotypes

Power of association study depends on LD
between markers and QTL

One way to increase LD between QTL alleles
and markers is to use haplotypes of markers
rather than a single marker

1_Q single marker (1 is the allele of the
marker)

1 1 Q 2 1 Haplotype of markers




LD mapping with haplotypes

e Value of haplotypes depends on LD
between haplotype and QTL

— If we find two identical haplotypes from the
population, what is the probability they
carry the same QTL allele?

— If probability is high, high level of LD
between haplotype and QTL




LD mapping with haplotypes

o If we find two identical haplotypes from the
population, what is the probability they carry
the same QTL allele?

e Haplotypes identical either because
chromosome segments from same common

ancestor







Marker Haplotype

111 2




Marker Haplotype

11102




LD mapping with haplotypes

o If we find two identical haplotypes from
the population, what is the probability
they carry the same QTL allele?

e Haplotypes identical either because
chromosome segments from same
common ancestor

e Or because of chance recombination...... :




Chance recombination produces the same haplotype.....

Sire




Chance recombination produces the same haplotype.....

111 1
2 9 2><2 Sire Formation of gamete




Chance recombination produces the same haplotype.....

111 1
222><2 Sire

: 1

Progeny




Chance recombination produces the same haplotype.....

111 1
222><2 Sire

: 1

Progeny




Chance recombination produces the same haplotype.....

111qf

5 o 2><2 Sire

: 1

111q2 Progeny

111Q2




Proportion of QTL variance explained by
surrounding markers

Proportion of QTL variance explianed by
marker haplotypes

3 4 5 6 7 8 9 10 11 12

Number of markers in 10cM




Proportion of QTL variance explained by
surrounding markers

Proportion of QTL variance explianed by
marker haplotypes

3 4 5 6 7 8 9 10 11 12

Number of markers in 10cM




Proportion of QTL variance explained by
surrounding markers

11211Q211222

11211Q211222

Proportion of QTL variance explianed by
marker haplotypes

3 4 5 6 7 8 9 10 11 12

Number of markers in 10cM




LD mapping with haplotypes

If we find two identical haplotypes from the
population, what is the probability they carry
the same QTL allele?

Haplotypes identical either because
chromosome segments from same common

ancestor
Or because of chance recombination

With more markers in haplotype, the chance
of creating the same haplotype by
recombination becomes small




SNP/QTL allele frequency mismatch?

S~ I

—— Proportion of SNPs
—— Proportion of QTL

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Allele Frequency




SNP/QTL allele frequency mismatch?

Haplotype Frequency
ACGGGCGTCC 331
ACAGATACGC 1
ACAAATACCC 1
ACAAATACCT 4
ACAAATACGC 10
ACAAATACGT 29
ATAAATACCC 23
ATAAATACGC 8
GCAAATACGC 3

S~ I

—— Proportion of SNPs
—— Proportion of QTL

0.1 0.2 0.3 0.4 0.5 0.6
Allele Frequency




LD mapping with haplotypes
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1 111121
1 211121
1221121
2 221121
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Animal_1 1 1 1 1 1 2 1
Animal_2 1 1 1 1 1 2 1
Animal_3 1 2 1 1 1 2 1
Animal 4 2 2 1 1 1 2 1
Animal 5 1 2 1 1 1 2 1




LD mapping with haplotypes

e Model ?

y=1"u+Xg+Zu+e

e Where g is now a vector of haplotype effects
dimensions (number of haplotypes observed x

1)

e And X allocates records to haplotyes




LD mapping with haplotypes

e Example (eg after using PHASE to infer
haplotype)

Animal Paternal haplotype = Maternal haplotype




LD mapping with haplotypes

e Example (eg after using PHASE to infer
haplotype)

Animal Paternal haplotype = Maternal haplotype

Haplotype
o X 3

Animal




LD mapping with haplotypes

e Fit haplotypes as random effects
- g~ N(OlGhz)
- Some haplotypes will be rare, very few observations

- Fitting the haplotype effect as random regresses the
effects back to account for the lack of information

L'X  1.'Z 'y
X'X X'Z X'y
Z'X Z'Z+A'2| | Z'y




LD mapping with haplotypes

e Fit haplotypes as random effects
- g~ N(OIGhZ)
- Some haplotypes will be rare, very few observations

— Fitting the haplotype effect as random regresses the
effects back to account for the lack of information

— }”h=6e2/6h2

1'X 1'Z
X'X+14, X'Z
7'X 7'7+A)




LD mapping with haplotypes
e There is a “cost” of using haplotypes instead
of single markers

e With single markers only one effect to
estimate, with haplotypes many effects

e Fewer observations per effect, lower accuracy
of estimating each effect

Nearest marker
Best marker
2 Marker haplotypes
4 Marker haplotypes
6 Marker haplotypes

Proportion of

QTL variance

explained
0.10
0.20
0.15
0.28
0.55

Maximum
number of
haplotypes

2

2

4

16

64

Observed
number of
haplotypes

2
2
3.4
9.4




Single SNPs vs Haplotypes
Single SNPs
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Single SNPs vs Haplotypes
Single SNPs Haplotypes
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Genome wide association

e Association testing with single marker
regression

e Power of genome wide association
studies

e Accounting for population structure
e LD mapping with haplotypes
e Validation




Validation, validation, validation

e Must validate significant associations in
independent population
— Another breed?
— Remove false positives

e Design of genome wide association study is
discovery + validation

e Make validation set large, limit number of
markers to test
— QTL effects likely to be small

— Avoid over-estimation of QTL effect due to multiple
testing




Genome wide assocation

e Take home points

e Power depends on extent of
LD/marker density and number of
phenotypic records

- Knowledge of extent of LD critical

— Use haplotypes?
e \Validation, validation, validation




Course overview

Day 1

— Linkage disequilibrium in animal and plant genomes
Day 2

— Genome wide association studies

Day 3

— Genomic selection

Day 4

— Genomic selection

Day 5

— Imputation and whole genome sequencing for genomic
selection




Genomic selection

e Problem marker assisted selection is
only a proportion of genetic variance
is tracked with markers
— Eg. 10 QTL << 5% of the genetic variance

o Alternative is to trace all segments of
the genome with markers

— Divide genome into chromosome
segments based on marker intervals?

— Capture all QTL = all genetic variance




Genomic selection

M MMMMMMMMM M
chromosome 4+ ___ | __ 1 | | I | |




Genomic selection

M MMMMMMMMM M
chromosome 441 ___ | __ | | | I | |

marker i




Genomic selection

M MMMMMMMMM M
chromosome 441 ___ | __ | | | I | |

marker i

Effect of “2” allele 103 L milk




Genomic selection

M MMMMMMMMM M
chromosome 4+ ___ | __ 1 | | I | |

0.1 0.00.030.040.00.01 0.3 0.0 0.050.050.0




Genomic selection

e Predict genomic breeding values as
sum of effects over all SNP




Genomic selection

e Predict genomic breeding values as
sum of effects over all SNP

Number of SNP




Genomic selection

e Genomic selection exploits linkage
disequilibrium
— Assumption is that markers picking up
QTL and will have same effect across the
whole population

e Possible within dense marker maps now
available




Genomic selection

e Genomic selection avoids bias in
estimation of effects due to multiple
testing, as all effects fitted
simultaneously




/Reference population /Selection candidates R

Genomic selection

genotypes Marker
@nd phenotypes @enones

1

Prediction equation
Genomic breeding value =
WiX) + WHXy + WaX....... w

/Selected breeders

Using genomic

\breeding values




Genomic selection

First step is to

oredict the

chromosome segment effects in a

reference popu

ation

Number of effects >>> than number

of records

Eg. 50,000 SNPs
From ~ 2000 records?
Need methods that can deal with this




Genomic selection with Best
Linear Unbiased Prediction

e BLUP = best linear unbiased prediction
e Model:

e In BLUP we assume SNP effects come from
normal distribution with same variance

E(g) ~ N(0,04°)




Genomic selection with BLUP

e BLUP assumes normal distribution of SNP
effects




Genomic selection with BLUP

e BLUP = best linear unbiased prediction
e Then we can estimate segment effects as:




Genomic selection with BLUP

Example
A “simulated” data set
Single chromosome, with 10 markers

Phenotypes “simulated”
— overall mean of 1

— an effect for SNP 1 of 2 allele of 1

— normally distributed error term with mean 0 and variance
1.




Genomic selection with BLUP

e Example

12345678910
000000120
100111210
100100111
111101211

011111210
e 10 SNPs

e Only 5 phenotypic records.




Genomic selection with BLUP

e Example
12345678910

000000120 2
1S RO 0 i 2 1 R
110 IS0 Y R0 11 Y 0
]
]

1 I L ) A Y |
e Assume value of 1 for A TEEREERE

e 1 =[11111]

u| (L' L'X Ty
o| LX'1, X'X+IZ] |X'y




Genomic selection with BLUP

e Example




Genomic selection with BLUP

e Now we want to predict GEBV for a group of
young animals without phenotypes.

GEBV = Xg

e We have the g_hat, and we can get X from their
haplotypes (after genotyping)

111111210
100111210
100111210
100111210
000000120




Genomic selection with BLUP

o GEBV "
GEBV = Xg

111111210
100111210
100111210
100111210
000000120




Genomic selection with BLUP

Where do we get 6,2 from?

Can estimate total additive genetic
variance and divide by number of
segments, eg 6,° = 6,2 /p

If using single markers take account of
heterozygosity

Ridge regression (Bayesian approach)
Cross validation




Genomic selection with BLUP

e An equivalent model

o If there are many QTLs whose effects are normally
distributed with constant variance,

e Then genomic selection equivalent to replacing the
expected relationship matrix with the realised or
genomic relationship matrix (G) estimated from
DNA markers in normal BLUP equations.

- G;; = proportion of genome that is IBD between animals i
and j




Genomic selection with BLUP

An equivalent model
Rescale X to account for allele frequencies
~Wj; = Xjj — 2p;

Then breeding values are

~v=wg ()

And

p
G=WW'/2> p.(d-p))

j=1




Genomic selection with BLUP

e An equivalent model




Genomic selection with BLUP

e An equivalent model
— Model 1.

— Model 2.




Genomic selection with BLUP

e An equivalent model
— Model 1.

— Model 2.

y=ul_ +7Zv-+e




Holstein reference

Jersey reference

Holstein validation

Jersey validation




Genomic selection with BLUP

e An equivalent model

e Why use model 2.

— If number of markers >>> large than
number of animals, more
computationally efficient

— Can be integrated into national
evaluations more readily?

— Calculate accuracy of GEBV from inverse
coefficient matrix




