
Genomic Selection in the era 
of Genome sequencing



Course overview

• Day 1
– Linkage disequilibrium in animal and plant genomes

• Day 2
– Genome wide association studies

• Day 3 
– Genomic selection

• Day 4 
– Genomic selection

• Day 5
– Imputation and whole genome sequencing for genomic 
selection



Genome wide association

• Association testing with single marker 
regression

• Power of genome wide association 
studies

• Accounting for population structure

• LD mapping with haplotypes

• Validation 
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Genome wide association

• LD mapping of QTL exploits 

population level associations 

between markers and QTL.  

– Associations arise because there are 

small segments of chromosome in 

the current population which are 

descended from the same common 

ancestor

– These chromosome segments, which 

trace back to the same common 

ancestor without intervening 

recombination, will carry identical 

marker alleles or marker haplotypes

– If there is a QTL somewhere within 

the chromosome segment, they will 

also carry identical QTL alleles

• The simplest way to exploit these 

associations is by single SNP 

regression

11Q121



Single marker regression

• Association between a marker and a trait can be 
tested with the model

• Where 
– y is a vector of phenotypes
– 1n is a vector of 1s allocating the mean to phenotype, 
– X is a design matrix allocating records to the marker 
effect, 

– g is the effect of the marker 
– e is a vector of random deviates ~ N(0,σe

2 )

• Underlying assumption here is that the marker will 
only affect the trait if it is in linkage disequilibrium 
with an unobserved QTL. 

 eXµ1y n ++= g



Single marker regression

• A small example

Animal Phenotpe SNP allele 1 SNP allele 2

1 2.030502 1 1 

2 3.542274 1 2 

3 3.834241 1 2 

4 4.871137 2 2 

5 3.407128 1 2 

6 2.335734 1 1 

7 2.646192 1 1 

8 3.762855 1 2 

9 3.689349 1 2 

10 3.685757 1 2 

 

2



Single marker regression

• The design vector 1n allocates phenotypes to the mean
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Single marker regression

• The design vector 1n allocates phenotypes to the mean

• The design vector X allocates phenotypes to genotypes

Animal 1n 

X, Number of “2” 

alleles  

1 1 0 
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5 3.407128 1 2 

6 2.335734 1 1 
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 y vector



Single marker regression

• Estimate the marker effect and the 
mean as:

















=













 −

∧

∧

yX'

y'1

XX'X'1

X'1'11 n

1

n

nnn

g

µ



Single marker regression
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Single marker regression
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Single marker regression
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Single marker regression

• Estimates of the mean and marker 
effect are:

• In the “simulation”, mean was 2, r2

between QTL and marker was 1, and 
effect of 2 allele at QTL was 1.
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Single marker regression

• Is the marker effect significant?

• F statistic comparing between 
marker variance to within marker 
variance

• Test against tabulated value for 
Fα,v1,v2

–α= significance value

–v1=1 (1 marker effect for 
regression)

–v2=9 (number of records -1) 



Single marker regression

• In our simple example

–Fdata=4.56

–F0.05,1,9=5.12 

• Not significant



Experiment

� 384 Holstein-Friesian dairy bulls selected from Australian 
dairy bull population

� genotyped for 10 000 SNPs
� Single marker regression with protein%



Results of genome scans with dense SNP panels
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Extent of LD in humans and livestock

And cattle……



<1% of 
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Genome wide association

• Association testing with single marker 
regression

• Power of genome wide association 
studies

• Accounting for population structure

• LD mapping with haplotypes

• Validation 



Power of GWAS

• What is the power of an association 
test with a certain number of records 
to detect a QTL?

• Power is probability of correctly 
rejecting null hypothesis when a QTL of 
really does exist in the population
– H0 = no QTL

– H1 = there is a QTL

• How many animals do we need to 
genotype and phenotype?



Power of GWAS

• Power is a function of:
– r2 between the marker and QTL

• sample size must be increased by 1/r2 to detect an 

un-genotyped QTL, compared with sample size for 

testing QTL itself
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Power of GWAS

• Power is a function of:
– r2 between the marker and QTL

• sample size must be increased by 1/r2 to detect an 

un-genotyped QTL, compared with sample size for 

testing QTL itself

– Proportion of total phenotypic variance explained 

by the QTL

– Number of phenotypic records 



Power of GWAS

• Power is a function of:
– r2 between the marker and QTL

• sample size must be increased by 1/r2 to detect an 

un-genotyped QTL, compared with sample size for 

testing QTL itself

– Proportion of total phenotypic variance explained 

by the QTL

– Number of phenotypic records 

– Allele frequency of the rare allele of SNP

• determines the minimum number of records used to 

estimate an allele effect.  

• The power becomes particular sensitive with very 

low frequencies (eg. <0.1).

– The significance level α set by the experimenter



Power of GWAS

• Power to detect a QTL explaining 5% of the 
phenotypic variance, 1000 phenotypic 
records
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Power of GWAS

• Power to detect a QTL explaining 
5% of the phenotypic variance
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variance!



Power of GWAS

• Power to detect a QTL explaining 
2.5% of the phenotypic variance
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Power of GWAS

• What significance level to use?

– P<0.01, P<0.001?

• We have a horrible multiple testing 

problem

– Eg. If test 10 000 SNP at P<0.01 expect 

100 significant results just by chance?

• Could just correct for the number of 

tests

– But is too stringent, ignores the fact that 

tests are on the same chromosome (eg 

not independent) 



Power of GWAS

• An alternative is to choose a significance level with 

an acceptable false discovery rate (FDR)

• Proportion of significant results which are really false 

positives

• FDR = mP/n

– m = number of markers tested

– P = significance level (eg. P=0.01)

– n = number of markers actually significant



Power of GWAS

• An alternative is to choose a significance level with 

an acceptable false discovery rate (FDR)

• Proportion of significant results which are really false 

positives

• FDR = mP/n

– m = number of markers tested

– P = significance level (eg. P=0.01)

– n = number of markers actually significant

• Example 

– 10 000 markers tested at P<0.001, and 20 significant.  

What is FDR?

– FDR=10000*0.001/20 = 50%

– Eg. 50% of our significant results are actually false 

positives   



Power of GWAS
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Power of GWAS
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Genome wide association

• Association testing with single marker 
regression

• Power of genome wide association 
studies

• Accounting for population structure

• LD mapping with haplotypes

• Validation 



Population structure

• Simple model we have used assumes 

all animals are equally (un) related.

• Unlikely to be the case.  

• Multiple offspring per sire, breeds or 

strains all create population structure.  

• If we don’t account for this, false 

positives!



Population structure

• Simple example 

– a sire has many progeny in the population.  

– the sire has a high estimated breeding value 

– a rare allele at a random marker is homozygous in 

the sire (aa)



Population structure

• Simple example 

– a sire has many progeny in the population.  

– the sire has a high estimated breeding value 

– a rare allele at a random marker is homozygous in 

the sire (aa)

– Then sub-population of his progeny have higher 

frequency of a than the rest of the population.

– As the sires’ estimated breeding value is high, his 

progeny will also have higher than average 

estimated breeding values.  

– If we don’t account for relationship between 

progeny and sire the rare allele will appear to 

have a (perhaps significant) positive effect.



• Can account for these relationships by 
extending our model…..

• Where 

– u is a vector of polygenic effects in the model with a 
covariance structure u~N(0,Aσa

2)

– A is the average relationship matrix built from the 
pedigree of the population

– Z is a design matrix allocating animals to records.  

Population structure

eZuX'1y n +++= gµ



• Can account for these relationships by 
extending our model…..

• Solutions (λ=σe
2/σa

2 ):

Population structure

eZuX'1y n +++= gµ
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• An example A matrix……..

Animal Sire Dam

1 0 0

2 0 0

3 0 0

4 1 2

5 1 2

6 1 3

Pedigree



Animal Sire Dam

1 0 0

2 0 0

3 0 0

4 1 2

5 1 2

6 1 3

Pedigree

Animal 1 Animal 2 Animal 3 Animal 4 Animal 5 Animal 6

Animal 1 1

Animal 2 0 1

Animal 3 0 0 1

Animal 4 0.5 0.5 0 1

Animal 5 0.5 0.5 0 0.5 1

Animal 6 0.5 0 0.5 0.25 0.25 1

• An example A matrix……..
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Animal Sire Dam

1 0 0

2 0 0

3 0 0

4 1 2

5 1 2

6 1 3

Pedigree

Animal 1 Animal 2 Animal 3 Animal 4 Animal 5 Animal 6

Animal 1 1

Animal 2 0 1

Animal 3 0 0 1

Animal 4 0.5 0.5 0 1

Animal 5 0.5 0.5 0 0.5 1

Animal 6 0.5 0 0.5 0.25 0.25 1

Half genes from mum, half from dad

• An example A matrix……..



Animal Sire Dam

1 0 0

2 0 0

3 0 0

4 1 2

5 1 2

6 1 3

Pedigree

Animal 1 Animal 2 Animal 3 Animal 4 Animal 5 Animal 6

Animal 1 1

Animal 2 0 1

Animal 3 0 0 1

Animal 4 0.5 0.5 0 1

Animal 5 0.5 0.5 0 0.5 1

Animal 6 0.5 0 0.5 0.25 0.25 1

• An example A matrix……..



Animal Sire Dam

1 0 0

2 0 0

3 0 0

4 1 2

5 1 2

6 1 3

Pedigree

Animal 1 Animal 2 Animal 3 Animal 4 Animal 5 Animal 6

Animal 1 1

Animal 2 0 1

Animal 3 0 0 1

Animal 4 0.5 0.5 0 1

Animal 5 0.5 0.5 0 0.5 1

Animal 6 0.5 0 0.5 0.25 0.25 1

Animals 4 and 5 are full sibs

• An example A matrix……..



Animal Sire Dam

1 0 0

2 0 0

3 0 0

4 1 2

5 1 2

6 1 3

Pedigree

Animal 1 Animal 2 Animal 3 Animal 4 Animal 5 Animal 6

Animal 1 1

Animal 2 0 1

Animal 3 0 0 1

Animal 4 0.5 0.5 0 1

Animal 5 0.5 0.5 0 0.5 1

Animal 6 0.5 0 0.5 0.25 0.25 1

Animals 6 is a half sib of 4 and 5

• An example A matrix……..



• Example

Population structure

Animal Sire Dam Phenotype SNP allele 1SNP allele 2

1 0 0 10.1 1 2

2 0 0 2.2 2 2

3 0 0 2.31 2 2

4 1 2 6.57 1 2

5 1 2 6.06 1 2

6 1 3 6.21 1 2

g=-3



• Example

Population structure
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• Example

Population structure

 eXµ1y n ++= g

X
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• Example

Population structure
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• Example

Population structure
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• Example

Population structure

eZuX'1y n +++= gµ
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8 12 1 2 2 1 1 1

1 1 1.825 0.33 0.165 -0.33 -0.33 -0.33

1 2 0.33 1.66 0 -0.33 -0.33 0

1 2 0.165 0 1.495 0 0 -0.33

1 1 -0.33 -0.33 0 1.66 0 0

1 1 -0.33 -0.33 0 0 1.66 0

1 1 -0.33 0 -0.33 0 0 1.66

33.45

37.96

10.1

2.2

2.31

6.57

6.06

6.21



• Example

Population structure
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1 0 0 10.1 1 2
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5 1 2 6.06 1 2

6 1 3 6.21 1 2



Population structure

• A simulated data set with a half sib 

family structure, one QTL simulated
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Population structure

• A simulated data set with a half sib 

family structure, one QTL simulated

  

0

10

20

30

40

50

60

70

80

0 100000 200000 300000 400000 500000 600000 700000

Chromosome position (kb)

F
 s

ta
ti

s
ti

c



Population structure

• Example of importance of accounting for 

population structure…….

– 365 Angus cattle genotyped for 10,000 SNPs

– polygenic and environmental effects were 

simulated for each animal

– No QTL fitted!

– Effect of each SNP tested using three models

• SNP only

• SNP and sire

• SNP and full pedigree



Population structure

 Significance level Analysis model  

p<0.005 p<0.001 p<0.0005 

Expected type I errors 40 8 4 

1.  Full pedigree model 39 (SD=14) 9 (SD=5) 4 (SD=3) 

2.  Sire pedigree model 

 

46* (SD=21) 11* (SD=7) 6* (SD=5.5) 

3.  No pedigree model  68
**

 (SD=31) 18
** 

(SD=11) 10
**

 (SD=7) 

4.  Selected 27% - full 

pedigree 

 

 
54

**
 (SD=18) 12

**
 (SD=6) 7

**
 (SD=4) 

 

Number of false positives……….



Population structure

• Problem when we do not have history of the 

population

• Solution – use the average relationship 

across all markers as the A matrix 
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Genomic relationship matrix

• Rescale X to account for allele frequencies

–wij = xij – 2pj

• Then 

∑
=

−=
p

j

jj
pp

1

)1(2/WW'G



Genome wide association

• Association testing with single marker 
regression

• Power of genome wide association 
studies

• Accounting for population structure

• LD mapping with haplotypes

• Validation 



LD mapping with haplotypes

• Power of association study depends on LD 
between markers and QTL

• One way to increase LD between QTL alleles 
and markers is to use haplotypes of markers 
rather than a single marker

• 1_Q single marker (1 is the allele of the 
marker)

• 1_1_Q_2_1 Haplotype of markers



LD mapping with haplotypes

• Value of haplotypes depends on LD 
between haplotype and QTL

– If we find two identical haplotypes from the 
population, what is the probability they 
carry the same QTL allele?

– If probability is high, high level of LD 
between haplotype and QTL



LD mapping with haplotypes

• If we find two identical haplotypes from the 
population, what is the probability they carry 
the same QTL allele?

• Haplotypes identical either because 
chromosome segments from same common 

ancestor





1 1 1 2

Marker Haplotype



1 1 1  Q 2

Marker Haplotype



LD mapping with haplotypes

• If we find two identical haplotypes from 
the population, what is the probability 
they carry the same QTL allele?

• Haplotypes identical either because 
chromosome segments from same 
common ancestor 

• Or because of chance recombination…….



1  1  1     1 
Sire 

2  2  2     2 

Chance recombination produces the same haplotype…..



1  1  1     1 
Sire 

2  2  2     2 
Formation of gamete

Chance recombination produces the same haplotype…..



1  1  1     1 
Sire 

2  2  2     2 

1  1  1     2 Progeny 

Chance recombination produces the same haplotype…..



1  1  1     1 
Sire 

2  2  2     2 

1  1  1     2 Progeny 

1  1  1     2 

Chance recombination produces the same haplotype…..



1  1  1  q 1 
Sire 

2  2  2  q 2 

1  1  1  q 2 Progeny 

1  1  1 Q 2 

Chance recombination produces the same haplotype…..



Proportion of QTL variance explained by 
surrounding markers
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Proportion of QTL variance explained by 
surrounding markers
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LD mapping with haplotypes

• If we find two identical haplotypes from the 
population, what is the probability they carry 
the same QTL allele?

• Haplotypes identical either because 
chromosome segments from same common 
ancestor 

• Or because of chance recombination…….

• With more markers in haplotype, the chance 
of creating the same haplotype by 
recombination becomes small



SNP/QTL allele frequency mismatch?
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SNP/QTL allele frequency mismatch?
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Haplotype Frequency

ACGGGCGTCC 331

ACAGATACGC 1

ACAAATACCC 1

ACAAATACCT 4

ACAAATACGC 10

ACAAATACGT 29

ATAAATACCC 23

ATAAATACGC 8

GCAAATACGC 3



LD mapping with haplotypes



LD mapping with haplotypes

Animal_1 1 1 1 1 1 2 1

1 1 1 1 1 2 1

Animal_2 1 1 1 1 1 2 1 

1 2 1 1 1 2 1

Animal_3 1 2 1 1 1 2 1

1 2 2 1 1 2 1

Animal_4 2 2 1 1 1 2 1

2 2 2 1 1 2 1

Animal 5 1 2 1 1 1 2 1

1 2 2 1 1 2 1



LD mapping with haplotypes

• Model ?

• Where g is now a vector of haplotype effects 
dimensions (number of haplotypes observed x 
1)

• And X allocates records to haplotyes

eZuXg'1y n +++= µ



LD mapping with haplotypes

• Example (eg after using PHASE to infer 
haplotype)

• X

Animal Paternal haplotype Maternal haplotype

1 1 1

2 1 2

3 2 3

4 5 4

5 3 2



Haplotype

1 2 3 4 5

1 2 0 0 0 0

2 1 1 0 0 0

Animal 3 0 1 1 0 0

4 0 0 0 1 1

5 0 1 1 0 0

LD mapping with haplotypes

• Example (eg after using PHASE to infer 
haplotype)

• X

Animal Paternal haplotype Maternal haplotype

1 1 1

2 1 2

3 2 3

4 5 4

5 3 2



LD mapping with haplotypes

• Fit haplotypes as random effects

– g ~ N(0,σh
2)

– Some haplotypes will be rare, very few observations

– Fitting the haplotype effect as random regresses the 
effects back to account for the lack of information

































+

=



















 −

−∧

∧

∧

yZ'

yX'

y'1

AZZ'XZ'Z'1

ZX'XX'X'1

Z'1X'1'11

u

g

n

1

1

n

n

nnnn

λ

µ



LD mapping with haplotypes

• Fit haplotypes as random effects
– g ~ N(0,σh

2)

– Some haplotypes will be rare, very few observations

– Fitting the haplotype effect as random regresses the 
effects back to account for the lack of information

– λh=σe
2/σh

2
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LD mapping with haplotypes

• There is a “cost” of using haplotypes instead 
of single markers

• With single markers only one effect to 
estimate, with haplotypes many effects

• Fewer observations per effect, lower accuracy 
of estimating each effect

 Proportion of 

QTL variance 

explained 

Maximum 

number of 

haplotypes 

Observed 

number of 

haplotypes 

Nearest marker 0.10 2 2 

Best marker 0.20 2 2 

2 Marker haplotypes 0.15 4 3.4 

4 Marker haplotypes 0.28 16 9.4 

6 Marker haplotypes 0.55 64 20.8 

 



Single SNPs vs Haplotypes

• Improve profitability

ABCG2

Single SNPs



Single SNPs vs Haplotypes

• Improve profitability

ABCG2

Single SNPs                                       Haplotypes
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Genome wide association

• Association testing with single marker 
regression

• Power of genome wide association 
studies

• Accounting for population structure

• LD mapping with haplotypes

• Validation



Validation, validation, validation

• Must validate significant associations in 
independent population
– Another breed?

– Remove false positives

• Design of genome wide association study is 
discovery + validation

• Make validation set large, limit number of 
markers to test
– QTL effects likely to be small

– Avoid over-estimation of QTL effect due to multiple 
testing



Genome wide assocation

• Take home points

• Power depends on extent of 
LD/marker density and number of 
phenotypic records
–Knowledge of extent of LD critical

–Use haplotypes? 

• Validation, validation, validation



Course overview

• Day 1
– Linkage disequilibrium in animal and plant genomes

• Day 2
– Genome wide association studies

• Day 3 
– Genomic selection

• Day 4 
– Genomic selection

• Day 5
– Imputation and whole genome sequencing for genomic 
selection



Genomic selection

• Problem marker assisted selection is 
only a proportion of genetic variance 
is tracked with markers

– Eg. 10 QTL << 5% of the genetic variance

• Alternative is to trace all segments of 
the genome with markers

– Divide genome into chromosome 
segments based on marker intervals?

– Capture all QTL = all genetic variance  



Genomic selection

chromosome
M    M   M  M   M    M   M   M   M   M    M



Genomic selection

chromosome

marker i

M    M   M  M   M    M   M   M   M   M    M



Genomic selection

chromosome

marker i

M    M   M  M   M    M   M   M   M   M    M

Effect of “2” allele
+0.3 L milk



Genomic selection

chromosome
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Genomic selection

• Predict genomic breeding values as 
sum of effects over all SNP

∑
∧

=
p
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gXGEBV



Genomic selection

• Predict genomic breeding values as 
sum of effects over all SNP

∑
∧

=
p

i

ii
gXGEBV

Number of SNP



Genomic selection

• Genomic selection exploits linkage 
disequilibrium

– Assumption is that markers picking up 
QTL and will have same effect across the 

whole population

• Possible within dense marker maps now 
available



Genomic selection

• Genomic selection avoids bias in 
estimation of effects due to multiple 
testing, as all effects fitted 
simultaneously 



Genomic selection



Genomic selection

• First step is to predict the 
chromosome segment effects in a 
reference population

• Number of effects >>> than number 
of records

• Eg. 50,000 SNPs

• From ~ 2000 records?

• Need methods that can deal with this 



Genomic selection with Best 
Linear Unbiased Prediction

• BLUP = best linear unbiased prediction

• Model:

• In BLUP we assume SNP effects come from 
normal distribution with same variance          
E(g) ~ N(0,σg

2)

egX1y iin ++= ∑
=

p

i 1

µ



Genomic selection with BLUP

• BLUP assumes normal distribution of SNP  
effects
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Genomic selection with BLUP

• BLUP = best linear unbiased prediction

• Then we can estimate segment effects as:

• λ=σe
2 / σg

2
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Genomic selection with BLUP

• Example

• A “simulated” data set

• Single chromosome, with 10 markers

• Phenotypes “simulated” 

– overall mean of 1

– an effect for SNP 1 of 2 allele of 1

– normally distributed error term with mean 0 and variance 
1.  



Genomic selection with BLUP

• Example

• 10 SNPs

• Only 5 phenotypic records.

X

Animal Y 1 2 3 4 5 6 7 8 9 10

1 0.19 0 0 0 0 0 0 1 2 0 2

2 1.23 1 0 0 1 1 1 2 1 0 1

3 0.86 1 0 0 1 0 0 1 1 1 1

4 1.23 1 1 1 1 0 1 2 1 1 1

5 0.45 0 1 1 1 1 1 2 1 0 1



Genomic selection with BLUP

• Example

• Assume value of 1 for λ

• 1n = [1 1 1 1 1]
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Genomic selection with BLUP

• Example

Mean 0.47

SNP1 0.29

SNP2 -0.05

SNP3 -0.05

SNP4 0.08

SNP5 -0.02

SNP6 0.13

SNP7 0.13

SNP8 -0.08

SNP9 0.11

SNP10 -0.08



Genomic selection with BLUP

• Now we want to predict GEBV for a group of 
young animals without phenotypes.

• We have the g_hat, and we can get X from their 
haplotypes (after genotyping)…………

∧

= gXGEBV

Progeny X

1 1 1 1 1 1 1 2 1 0 1

2 1 0 0 1 1 1 2 1 0 1

3 1 0 0 1 1 1 2 1 0 1

4 1 0 0 1 1 1 2 1 0 1

5 0 0 0 0 0 0 1 2 0 2



Genomic selection with BLUP

• GEBV
∧

= gXGEBV

X                                              GEBV

∧

g

1 1 1 1 1 1 2 1 0 1 0.29 0.47

1 0 0 1 1 1 2 1 0 1 -0.05 0.58

1 0 0 1 1 1 2 1 0 1 -0.05 0.58

1 0 0 1 1 1 2 1 0 1 0.08 0.58

0 0 0 0 0 0 1 2 0 2 -0.02 -0.20

0.13

0.13

-0.08

0.11

-0.08



Genomic selection with BLUP

• Where do we get σg
2 from?

• Can estimate total additive genetic 
variance and divide by number of 
segments, eg σg

2 = σa
2 /p

• If using single markers take account of 
heterozygosity

• Ridge regression (Bayesian approach)
• Cross validation

∑
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Genomic selection with BLUP

• An equivalent model

• If there are many QTLs whose effects are normally 
distributed with constant variance, 

• Then genomic selection equivalent to replacing the 
expected relationship matrix with the realised or 
genomic relationship matrix (G) estimated from 

DNA markers in normal BLUP equations.

– Gij = proportion of genome that is IBD between animals i 
and j



Genomic selection with BLUP

• An equivalent model

• Rescale X to account for allele frequencies

–wij = xij – 2pj

• Then breeding values are

– v = Wg (             )

• And

• Then 

∧

= gXGEBV

∑
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jj pp
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Genomic selection with BLUP

• An equivalent model

eZv1y n ++= µ
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Genomic selection with BLUP

• An equivalent model

–Model 1. 

–Model 2. 

egX1y iin ++= ∑
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i 1
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Genomic selection with BLUP

• An equivalent model

–Model 1. 

–Model 2. 

eZv1y n ++= µ

egX1y iin ++= ∑
=

p

i 1

µ
∧

= gXGEBV
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Holstein reference     n = 781

Jersey reference       n = 287

Holstein validation    n = 400

Jersey validation      n = 77



Genomic selection with BLUP

• An equivalent model

• Why use model 2.
– If number of markers >>> large than 
number of animals, more 
computationally efficient

–Can be integrated into national 
evaluations more readily? 

–Calculate accuracy of GEBV from inverse 
coefficient matrix


