
Genomic Selection in the era 
of Genome sequencing



Course overview

• Day 1
– Linkage disequilibrium in animal and plant genomes

• Day 2
– Genome wide association studies

• Day 3 
– Genomic selection

• Day 4 
– Genomic selection

• Day 5
– Imputation and whole genome sequencing for genomic 

selection



Genomic selection

• Introduction

• Genomic selection with Least Squares and 
BLUP

• Introduction to Bayesian methods

• Genomic selection with Bayesian methods

• Comparison of accuracy of methods



Genomic selection

• Problem marker assisted selection is 
only a proportion of genetic variance 
is tracked with markers

– Eg. 10 QTL << 5% of the genetic variance

• Alternative is to trace all segments of 
the genome with markers

– Divide genome into chromosome 
segments based on marker intervals?

– Capture all QTL = all genetic variance  
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• Predict genomic breeding values as 
sum of effects over all segments
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Genomic selection

• Predict genomic breeding values as 
sum of effects over all segments
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Genomic selection

• Genomic selection can 
be implemented

–with marker haplotypes 
within chromosome 
segments
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Genomic selection

• Genomic selection can 
be implemented

–with marker haplotypes 
within chromosome 
segments

–with single markers ∑
∧

=
p

i

ii gXGEBV

∑
∧

=
p

i

ii gXGEBV

2       -0.5



Genomic selection

• Genomic selection exploits linkage 
disequilibrium

– Assumption is that effect of haplotypes or 
markers within chromosome segments 
picking up QTL and will have same effect 

across the whole population

• Possible within dense marker maps now 
available 1_1   0.3

1_2   0.0

2_1  -0.2

2_2  -0.1



Genomic selection

• Genomic selection avoids bias in 
estimation of effects due to multiple 
testing, as all effects fitted 
simultaneously 
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Genomic selection

• First step is to predict the 
chromosome segment effects in a 
reference population

• Number of effects >>> than number 
of records

• Eg. 10 000 intervals * 4 haplotypes = 
40 000 haplotype effects

• From ~ 2000 records?

• Need methods that can deal with this 



Genomic selection

• Introduction

• Genomic selection with Least Squares 
and BLUP

• Introduction to Bayesian methods

• Genomic selection with Bayesian 
methods

• Comparison of accuracy of methods



Least squares Genomic selection

• Two step procedure
– Test each chromosome segment for presence of QTL 

(fitting haplotypes within segment), take significant 
effects

– Fit the  significant effects simultaneously in multiple 
regression

– Predict GEBVs

• Identical to Marker assisted selection with multiple 
markers

• Problems remain
– Do not capture all QTL
– Over-estimation of haplotype effects due to setting of 

significance threshold



Genomic selection with BLUP

• BLUP = best linear unbiased prediction

• Model:

• In BLUP we assume variance of haplotype 
effects across all segments is equal, eg           
E(g) ~ N(0,σg

2), where g = [g1g2g3..gp]

egX1y iin ++= ∑
=
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Genomic selection with BLUP

• BLUP assumes normal distribution of 
SNP/haplotype effects

-4 -2 0 2 4 6

0
.0

0
.1

0
.2

0
.3

0
.4

D
e

n
s
it
y



Genomic selection with BLUP

• BLUP = best linear unbiased prediction

• Then we can estimate segment effects as:

• λ=σe
2 / σg
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Genomic selection with BLUP

• Example

• A “simulated” data set

• Single chromosome, with 10 markers

• Phenotypes “simulated” 

– overall mean of 1

– an effect for SNP 1 of 2 allele of 1

– normally distributed error term with mean 0 and variance 
1.  



Genomic selection with BLUP

• Example

• 10 SNPs

• Only 5 phenotypic records.

X

Animal Y 1 2 3 4 5 6 7 8 9 10

1 0.19 0 0 0 0 0 0 1 2 0 2

2 1.23 1 0 0 1 1 1 2 1 0 1

3 0.86 1 0 0 1 0 0 1 1 1 1

4 1.23 1 1 1 1 0 1 2 1 1 1

5 0.45 0 1 1 1 1 1 2 1 0 1



Genomic selection with BLUP

• Example

• Assume value of 1 for λ

• 1n = [1 1 1 1 1]
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Genomic selection with BLUP

• Example

Mean 0.47

SNP1 0.29

SNP2 -0.05

SNP3 -0.05

SNP4 0.08

SNP5 -0.02

SNP6 0.13

SNP7 0.13

SNP8 -0.08

SNP9 0.11

SNP10 -0.08



Genomic selection with BLUP

• Now we want to predict GEBV for a group of 
young animals without phenotypes.

• We have the g_hat, and we can get X from their 
haplotypes (after genotyping)…………

∧

= gXGEBV

Progeny X

1 1 1 1 1 1 1 2 1 0 1

2 1 0 0 1 1 1 2 1 0 1

3 1 0 0 1 1 1 2 1 0 1

4 1 0 0 1 1 1 2 1 0 1

5 0 0 0 0 0 0 1 2 0 2



Genomic selection with BLUP

• GEBV
∧

= gXGEBV

X                                              GEBV

∧

g

1 1 1 1 1 1 2 1 0 1 0.29 0.47

1 0 0 1 1 1 2 1 0 1 -0.05 0.58

1 0 0 1 1 1 2 1 0 1 -0.05 0.58

1 0 0 1 1 1 2 1 0 1 0.08 0.58

0 0 0 0 0 0 1 2 0 2 -0.02 -0.20

0.13

0.13

-0.08

0.11

-0.08



Genomic selection with BLUP

• Where do we get σg
2 from?

• Can estimate total additive genetic 
variance and divide by number of 
segments, eg σg

2 = σa
2 /p

• If using single markers take account of 
heterozygosity

• Ridge regression (Bayesian approach)
• Cross validation
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Genomic selection with BLUP

• An equivalent model

• If there are many QTLs whose effects are normally 
distributed with constant variance, 

• Then genomic selection equivalent to replacing the 
expected relationship matrix with the realised or 
genomic relationship matrix (G) estimated from 

DNA markers in normal BLUP equations.

– Gij = proportion of genome that is IBD between animals i 
and j



Genomic selection with BLUP

• An equivalent model

• Rescale X to account for allele frequencies

–wij = xij – 2pj

• Then breeding values are

– v = Wg (             )

• And

• Then 

∧

= gXGEBV
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Genomic selection with BLUP

• An equivalent model

eZv1y n ++= µ
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Genomic selection with BLUP

• An equivalent model

–Model 1. 

–Model 2. 
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Genomic selection with BLUP

• An equivalent model

–Model 1. 

–Model 2. 

eZv1y n ++= µ
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Holstein reference     n = 781

Jersey reference       n = 287

Holstein validation    n = 400

Jersey validation      n = 77



Genomic selection with BLUP

• An equivalent model

• Why use model 2.
– If number of markers >>> large than number 

of animals, more computationally efficient

– Can be integrated into national evaluations 
more readily? 

– Calculate accuracy of GEBV from inverse 
coefficient matrix
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Genomic selection

• Introduction

• Genomic selection with Least Squares 
and BLUP

• Introduction to Bayesian methods

• Genomic selection with Bayesian 
methods

• Comparison of accuracy of methods



Bayesian methods

• BLUP assumes normally 
distributed QTL effects

• Does not match prior 
knowledge of 
distributions of QTL 
effects for some traits

• Use Bayesian 
approaches to 
incorporate prior 
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Bayesian methods
• Bayes theorem
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Bayesian methods
• Bayes theorem

)()|()|( xPxyPyxP ∝

Probability of 

parameters x given 

the data y (posterior)

Is proportional to Probability of 

data y given the 

x (likelihood of 

data)

Prior 

probability 

of x



Bayesian methods

• Consider an experiment where we measure height 
of 10 people to estimate average height

• We want to use prior knowledge from many 
previous studies that average height is 174cm 
with standard error 5cm

y=average height + e



Bayesian methods
• Bayes theorem
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Bayesian methods
• Bayes theorem
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Prior probability of x (average height)
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Bayesian methods
• Bayes theorem
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Prior probability of x (average height)
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Bayesian methods
• Bayes theorem
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Bayesian methods
• Bayes theorem

• Less certainty about prior information? Use less informative (flat) 
prior
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Bayesian methods
• Bayes theorem

• Less certainty about prior information? Use less informative (flat) 
prior
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0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

160 165 170 175 180 185 190

Height

L
(y

|x
)

P(x|y) mean = 178cm

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

160 165 170 175 180 185 190

Height

D
e

n
s
it
y

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

160 165 170 175 180 185 190

Height

P
(H

e
ig

h
t|
y
)



Bayesian methods
• Bayes theorem

• More certainty about prior information? Use more informative prior
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Bayesian methods
• Bayes theorem

• More certainty about prior information? Use more informative prior
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L(y|x)                              P(x)                  

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

160 165 170 175 180 185 190

Height

L
(y

|x
)

P(x|y) mean = 174.5cm

0

0.005

0.01

0.015

0.02

0.025

160 165 170 175 180 185 190

Height

P
(H

e
ig

h
t|

y
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

160 165 170 175 180 185 190

Height

P
(h

e
ig

h
t)



Genomic selection

• Introduction

• Genomic selection with Least Squares 
and BLUP

• Introduction to Bayesian methods

• Genomic selection with Bayesian 
methods

• Comparison of accuracy of methods



Genomic selection

• For some traits 
prior 
knowledge 
suggests t-
distribution of 
effects

• How to 
incorporate this 
into our 
predictions?
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Genomic selection

• For some traits 
prior 
knowledge 
suggests t-
distribution of 
effects

• How to 
incorporate this 
into our 
predictions?
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Genomic selection

• The t distribution
can be presented 
as a two level 
hierarchical model

• Allow different 
variances between 
chromosome 
segments

• Assume a 
distribution of 
these variances

• Computationally 
easier to deal with 
than original form -10 -5 0 5 10
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Genomic selection
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Genomic selection

chromosome
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Genomic selection

chromosome

chromosome 
segment 5, 10 
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Genomic selection

chromosome

chromosome 
segment 5, 10 
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segment effects 
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1_1    2_1 

1_2    2_2

σg5
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σg10
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=g1,g2,g3,g4,g5…….. ~ N(0, σg
2)



Genomic selection

chromosome

chromosome 
segment 5, 10 
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Genomic selection

chromosome

chromosome 
segment 5, 10 

M    M   M  M   M    M   M   M   M   M    M

chromosome 
segment effects 
g5, g10

1_1    2_1 

1_2    2_2

σg5
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≠g5~ N(0, σg5
2), g10~ N(0, σg10

2)



Bayesian methods

• Now lets allow different variances of 
chromosome segment effects
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Bayesian methods

• Now lets allow different variances of 
chromosome segment effects

• Need two levels of models

– Data

– Variances of chromosome segment effects
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Bayesian methods

• Now lets allow different variances of 
chromosome segment effects

• Data

),(),|()|,( µµµ ggg PyPyP ∝
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Bayesian methods

• Variances of chromosome segments

• Note that these variance components are 
not the parameters of interest

• However they are useful intermediates to 
arrive at better inferences for the gi

• Amount of shrinkage of effects varies 
between segments
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Bayesian methods

• Variances of chromosome segments

• Prior?

– Inverted chi square convenient for variances
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Bayesian methods

• Prior?
– Inverted chi square convenient for variances
– An inverted chi square with v degrees of freedom 

and scaled by S2, eg. 

– Describes a distribution with 
• mean 

• variance 

– Larger v, more informative prior = more belief 
about variance
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Bayesian methods

v=2



Bayesian methods

v=2

v=20



Bayesian methods

• Variances of chromosome segments

• Prior?

• We can choose v and S2 so that the prior 
reflects our knowledge that there are many 
QTL of small effect and few of large effect
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Bayesian methods
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Bayesian methods

• Variances of chromosome segments

• Posterior?

– An advantage of choosing the inverse chi-square 
distribution for the prior is that the posterior will 
also be an inverse chi-square distribution

• Degrees of freedom = prior + data

• Scaling factor = sums of squares prior (S2) + sums of 
squares from data
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Bayesian methods

• Variances of chromosome segments

• Posterior?

– ni = number of haplotype effects
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Bayesian methods

• Variances of chromosome segments

• Posterior?

• But posterior cannot be estimated directly, 
dependent on gi!!
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Bayesian methods

• Solution is to use Gibbs sampling

– Draw samples from the posterior distributions of 
parameters conditional on all other effects

– The average of these samples can be used as the 
estimates of the parameters



Bayesian methods

• Gibbs sampling scheme

–Parameters to estimate and their posteriors

–P(σgi
2|gi)

–P(σe
2|e)

–P(µ|y,e,g, σe
2)

–P(gij|y,µ,g≠ij,σgi
2,σe

2)
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Bayesian methods

• Gibbs sampling scheme

–Parameters to estimate and their posteriors

–P(σgi
2|gi)

–P(σe
2|e)

–P(µ|y,e,g, σe
2)

–P(gij|y,µ,g≠ij,σgi
2,σe

2)
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Bayesian methods

• The Gibbs chain

–Step 1.  Initialise value of g, eg. g=0.01 
and µ, eg µ=0.01

–Step 2.  For each i, draw from P(σgi
2|gi)
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Bayesian methods

• The Gibbs chain

–Step 1.  Initialise value of g, eg. g=0.01 
and µ, eg µ=0.01

–Step 2.  For each i, draw from P(σgi
2|gi)

• σg1
2=0.95
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Bayesian methods

• The Gibbs chain

–Step 1.  Initialise value of g, eg. g=0.01 
and µ, eg µ=0.01

–Step 2.  For each i, draw from P(σgi
2|gi)

–Step 3.  Draw a sample from P(σe
2|e)   

First calculate the e as 

µ'1n−−= Xgye



Bayesian methods

• The Gibbs chain

–Step 1.  Initialise value of g, eg. g=0.01 
and µ, eg µ=0.01

–Step 2.  For each i, draw from P(σgi
2|gi)

–Step 3.  Draw a sample from P(σe
2|e)   

First calculate the e as

–Then sample… 

µ'1n−−= Xgye
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Bayesian methods

• The Gibbs chain

–Step 1.  Initialise value of g, eg. g=0.01 
and µ, eg µ=0.01

–Step 2.  For each i, draw from P(σgi
2|gi)

–Step 3.  Draw a sample from P(σe
2|e)   

First calculate the e as

–Then sample…

– σe
2 = 0.5

µn1−−= Xgye
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Bayesian methods

• The Gibbs chain

–Step 1.  Initialise value of g, eg. g=0.01 
and µ, eg µ=0.01

–Step 2.  For each i, draw from P(σgi
2|gi)

–Step 3.  Draw a sample from P(σe
2|e)

–Step 4.  Draw a sample from P(µ|y,g,σe
2) 



Bayesian methods

• The Gibbs chain

–Step 1.  Initialise value of g, eg. g=0.01 
and µ, eg µ=0.01

–Step 2.  For each i, draw from P(σgi
2|gi)

–Step 3.  Draw a sample from P(σe
2|e)

–Step 4.  Draw a sample from P(µ|y,g,σe
2)

– µ=-0.1 
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Bayesian methods

• The Gibbs chain

–Step 1.  Initialise value of g, eg. g=0.01 
and µ, eg µ=0.01

–Step 2.  For each i, draw from P(σgi
2|gi)

–Step 3.  Draw a sample from P(σe
2|e)

–Step 4.  Draw a sample from P(µ|y,g,σe
2)

–Step 5.  For each gij, draw from 
P(gij|y,µ,g,σgi

2,σe
2)

– g11 = 0.5
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Bayesian methods

• The Gibbs chain

–Repeat steps 2-5 many times to build up 
samples from posterior distributions of the 
parameters



Bayesian methods

• The Gibbs chain

–Repeat steps 2-5 many times to build up 
samples from posterior distributions of the 
parameters

–Finally, take estimates of parameters as 
average over many cycles

–Discard first ~ 100 cycles as dependent on 
starting values



Bayesian methods

• Example
– Consider a data set with three markers.  The data 

set was simulated as: 
– the effect of a 2 allele at the first marker is 3, the 

effect of a 2 allele at the second marker is 0, and 
the effect of a 2 allele at the third marker was -2.

– the µ was 3 
– σe

2 was 0.23.  The data set was:



Bayesian methods

• Example

Animal Phenotype Marker1 allele 1 Marker1 allele 2 Marker2 allele 1 Marker 2 allele 2 Marker3 allele 1 Marker 3 allele 2

1 9.68 2 2 2 1 1 1

2 5.69 2 2 2 2 2 2

3 2.29 1 2 2 2 2 2

4 3.42 1 1 2 1 1 1

5 5.92 2 1 1 1 1 1

6 2.82 2 1 2 1 2 2

7 5.07 2 2 2 1 2 2

8 8.92 2 2 2 2 1 1

9 2.4 1 1 2 2 1 2

10 9.01 2 2 2 2 1 1

11 4.24 1 2 1 2 2 1

12 6.35 2 2 1 1 1 2

13 8.92 2 2 1 2 1 1

14 -0.64 1 1 2 2 2 2

15 5.95 2 1 1 1 1 1

16 6.13 1 2 2 1 1 1

17 6.72 2 1 2 1 1 1

18 4.86 1 2 2 1 1 2

19 6.36 2 2 2 2 2 2

20 0.81 1 1 2 1 1 2

21 9.67 2 2 1 2 1 1

22 7.74 2 2 2 1 1 2

23 1.45 1 1 2 2 2 1

24 1.22 1 1 2 1 2 1

25 -0.52 1 1 2 2 2 2



Bayesian methods

• Example
– The Bayesian approach was applied, fitting 

single marker effects

– X matrix

• Number of copies of two allele for each animal, 
eg. 2 1 0 for animal 1.



Bayesian methods

• The Gibbs chain

–Step 1.  Initialise value of g, µ

• g1=0.01, g2=0.01,g3=0.01, µ=0.1



Bayesian methods

• The Gibbs chain

–Step 1.  Initialise value of g, µ

• g1=0.01, g2=0.01,g3=0.01, µ=0.1

–Step 2.  For i=1,2,3, draw from P(σgi
2|gi)
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Bayesian methods

• The Gibbs chain

–Step 1.  Initialise value of g, µ

• g1=0.01, g2=0.01,g3=0.01, µ=0.1

–Step 2.  For i=1,2,3, draw from P(σgi
2|gi)

• σg1
2=0.002, σg2

2=0.06, σg3
2=0.009
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Bayesian methods

• The Gibbs chain

–Step 1.  Initialise value of g, µ

• g1=0.01, g2=0.01,g3=0.01, µ=0.1

–Step 2.  For i=1,2,3, draw from P(σgi
2|gi)

• σg1
2=0.002, σg2

2=0.06, σg3
2=0.009

–Step 3.  Draw a sample from P(σe
2|e)

µn1−−= Xgye
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Bayesian methods

• The Gibbs chain

–Step 1.  Initialise value of g, µ

• g1=0.01, g2=0.01,g3=0.01, µ=0.1

–Step 2.  For i=1,2,3, draw from P(σgi
2|gi)

• σg1
2=0.002, σg2

2=0.06, σg3
2=0.009

–Step 3.  Draw a sample from P(σe
2|e)

• σe
2= 53.38
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Bayesian methods

• The Gibbs chain

–Step 1.  Initialise value of g, µ

• g1=0.01, g2=0.01,g3=0.01, µ=0.1

–Step 2.  For i=1,2,3, draw from P(σgi
2|gi)

• σg1
2=0.002, σg2

2=0.06, σg3
2=0.009

–Step 3.  Draw a sample from P(σe
2|e)

• σe
2= 53.38

–Step 4.  Draw a sample from P(µ|y,g,σe
2)

• µ=3.25 
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Bayesian methods

• The Gibbs chain

–Step 1.  Initialise value of g, µ

• g1=0.01, g2=0.01,g3=0.01, µ=0.1

–Step 2.  For i=1,2,3, draw from P(σgi
2|gi)

• σg1
2=0.002, σg2

2=0.06, σg3
2=0.009

–Step 3.  Draw a sample from P(σe
2|e)

• σe
2= 53.38

–Step 4.  Draw a sample from P(µ|y,g,σe
2)

• µ=3.25

–Step 5.  Draw a sample from 
P(gij|y,µ,g≠ij,σgi

2,σe
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Bayesian methods

• The Gibbs chain

–Step 1.  Initialise value of g, µ

• g1=0.01, g2=0.01,g3=0.01, µ=0.1

–Step 2.  For i=1,2,3, draw from P(σgi
2|gi)

• σg1
2=0.002, σg2

2=0.06, σg3
2=0.009

–Step 3.  Draw a sample from P(σe
2|e)

• σe
2= 53.38

–Step 4.  Draw a sample from P(µ|y,g, σe
2,e)

• µ=3.25

–Step 5.  Draw a sample from 
P(gij|y,µ,g≠ij,σgi

2,σe
2) 

• g1=-0.02, g2=-0.81,g3=-0.005 



Bayesian methods

• Gibbs chain for 1000 cycles

– P(g1|y,µ,g≠1,σg1
2,σe

2)



Bayesian methods

• Gibbs chain for 1000 cycles

– P(g1|y,µ,g≠1,σg1
2,σe

2)

“Burn in”



Bayesian methods

• Gibbs chain for 1000 cycles

– P(g1|y,µ,g≠1,σg1
2,σe

2)

97.21 =
∧

g



Bayesian methods

• Gibbs chain for 1000 cycles

97.21 =
∧

g 002.02 =
∧

g 81.11 −=
∧

g



Bayesian methods

97.21 =
∧

g 002.02 =
∧

g 81.11 −=
∧

g

Vector of SNP effects for calculating GEBV



Bayesian methods

• Alternative priors for variance of 
segment haplotype/snp effects

–Meuwissen BayesA

–Xu (2003)

• Uninformative

–Te Braak (2006)

–Meuwissen BayesB

2

)002.0,012.4(

−χ

2

21/' −
− aii gg χ

2

)002.0,012.4(

−
++ ii g'ginχ

ασσ +−∝ 122 )()( gigip

2

)0,0(

−χ
2

),1(

−
gg'χ



Bayesian methods

• Meuwissen BayesB
– BayesA prior information is 

many QTL with small effects 
and few with moderate 
effects

– But we have more prior 
knowledge than this – some 
chromosome segments will 
have no effect at all (contain 
no QTL)

• σgi
2=0,gi =0

– How to sample from the 
posterior? -15 -10 -5 0 5 10 15 20
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Bayesian methods

• Meuwissen BayesB
– If we sample σgi

2 from 

–We will never sample 0, as the distribution 
has no mass at zero.  
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Bayesian methods

• Meuwissen BayesB
– If we sample σgi

2 from 

–We will never sample 0 if gi’gi>0, as the 
distribution has no mass at zero.  

–But if σgi
2 >0, then sampling gi = 0 has 

infinitesimal (basically zero) probability
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Bayesian methods

• Meuwissen BayesB

–Solution: sample σgi
2,gi simultaneously from 

the distribution:

*),|(*)|(*)|,( 222
ygpypygp giigiigi σσσ ×=

We want to sample from this Can do it by sampling from these two 

distributions



Bayesian methods

• Meuwissen BayesB

–Solution: sample σgi
2,gi simultaneously from 

the distribution:
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We want to sample from this P(gi|y,µ,g,σgi
2,σe
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Bayesian methods

• Meuwissen BayesB

–Solution: sample σgi
2,gi simultaneously from 

the distribution:

*),|(*)|(*)|,( 222
ygpypygp giigiigi σσσ ×=

??

Sample σgi
2 without conditioning on gi



Bayesian methods

• Meuwissen BayesB

–Solution: sample σgi
2,gi simultaneously from 

the distribution:

–Cannot be expressed as a known 
distribution = cannot use Gibbs for this bit

–Use a Metropolis Hastings algorithm  
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Bayesian methods

• Meuwissen BayesB

–Solution: sample σgi
2,gi simultaneously from 

the distribution:

–Step1 Sample σg_new
2,from prior(σg_new

2)

*),|(*)|(*)|,( 222
ygpypygp giigiigi σσσ ×=

0.000 0.001 0.002 0.003 0.004
0

1
0

0
0

2
0
0

0
3

0
0

0
4

0
0

0

density.default(x = xx)

D
e

n
si

ty



Bayesian methods

• Meuwissen BayesB

–Solution: sample σgi
2,gi simultaneously from 

the distribution:

–Step1 Sample σg_new
2,from prior(σg_new

2)

– σg_new
2=0
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Bayesian methods

• Meuwissen BayesB

–Solution: sample σgi
2,gi simultaneously from 

the distribution:

–Step1 Sample σg_new
2,from prior(σg_new

2)

– σg_new
2=0.5
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Bayesian methods

• Meuwissen BayesB

–Solution: sample σgi
2,gi simultaneously from 

the distribution:

–Step 1 Sample σg_new
2,from prior(σg_new

2)

–Step 2 Evaluate p(y*| σg_new
2) (Likelihood)
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Bayesian methods

• Meuwissen BayesB

–Solution: sample σgi
2,gi simultaneously from 

the distribution:

–Step 1 Sample σg_new
2,from prior(σg_new

2)

–Step 2 Evaluate p(y*| σg_new
2) (Likelihood)

–Step 3 Replace σgi
2 with σg_new

2 probability                                    
min[p(y*| σg_new

2)/ p(y*| σgi
2):1] 

*),|(*)|(*)|,( 222
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Bayesian methods

• Meuwissen BayesB

–Solution: sample σgi
2,gi simultaneously from 

the distribution:

–Step 1 Sample σg_new
2,from prior(σg_new

2)

–Step 2 Evaluate p(y*| σg_new
2) (Likelihood)

–Step 3 Replace σgi
2 with σg_new

2 probability                                    
min[p(y*| σg_new

2)/ p(y*| σgi
2):1] 

–Step 4 Repeat ~ 100 cycles 

*),|(*)|(*)|,( 222
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Genomic selection

• Introduction

• Genomic selection with Least Squares 
and BLUP

• Introduction to Bayesian methods

• Genomic selection with Bayesian 
methods

• Comparison of accuracy of methods



Genomic selection

• Comparison of accuracy of methods 
(Meuwissen et al. 2001)
– Genome of 1000 cM simulated, marker 

spacing of 1 cM.  

– Markers surrounding each 1-cM region  
combined into haplotypes.

– Due to finite population size (Ne = 100), 
marker haplotypes were in linkage 
disequilibrium with QTL between markers.  

– Effects of haplotypes predicted in one 
generation of 2000 animals

– Breeding values for progeny of these 
animals predicted based on marker 
genotypes



Genomic selection

• Comparison of accuracy of methods 
(Meuwissen et al. 2001)

 rTBV;EBV + SE bTBV.EBV + SE 

 

LS 0.318 ± 0.018 0.285 ± 0.024 

BLUP 0.732 ± 0.030 0.896 ± 0.045 

BayesA 0.798 0.827 

BayesB 0.848 + 0.012 0.946 + 0.018 

 



Genomic selection

• Comparison of accuracy of methods 
(Meuwissen et al. 2001)
– The least squares method does very poorly, 

primarily because the haplotype effects are 
over-estimated.  



Genomic selection

• Comparison of accuracy of methods 
(Meuwissen et al. 2001)
– The least squares method does very poorly, 

primarily because the haplotype effects are 
over-estimated.  

– Increased accuracy of the Bayesian approach 
because method sets many of the effects of 
the chromosome segments close to zero in 
BayesA, or zero in BayesB



Genomic selection

• Comparison of accuracy of methods 
(Meuwissen et al. 2001)
– The least squares method does very poorly, 

primarily because the haplotype effects are 
over-estimated.  

– Increased accuracy of the Bayesian approach 
because method sets many of the effects of 
the chromosome segments close to zero in 
BayesA, or zero in BayesB

– Also “shrinks” estimates of effects of other 
chromosome segments based on a prior 
distribution of QTL effects. 



Genomic selection

• Comparison of accuracy of methods 
(Meuwissen et al. 2001)
– The least squares method does very poorly, 

primarily because the haplotype effects are 
over-estimated.  

– Increased accuracy of the Bayesian approach 
because method sets many of the effects of 
the chromosome segments close to zero in 
BayesA, or zero in BayesB

– Also “shrinks” estimates of effects of other 
chromosome segments based on a prior 
distribution of QTL effects. 

– Accuracies were very high, as high as 
following progeny testing for example



In real data

• 1500 Australian dairy 

bulls

• genotyped for 56000 

genome wide SNPs

• Phenotypes average 

of daughters milk 

production



• Split data into two sub-populations

– Reference:  Bulls born < 2003

– Validation: Bulls born >= 2003

In real data



• Split data into two sub-populations

– Reference:  Bulls born < 2003

– Validation: Bulls born >= 2003

• Accuracy

– Correlation of genomic breeding values with 
EBVs (which include daughter information) in 
validation set

In real data



In real data
Table 3 MEBV- Correlation between predicted MEBV and ABV in the validation 

data set (Bulls proven in years 2005, 2006, 2007)  

 

 

 

 

Method  Protein kg Fat kg Protein % Fat % 

Bayes SSVS  0.55 0.51 0.68 0.73 

Bayes A  0.53 0.48 0.66 0.70 

BLUP 0.60 0.48 0.66 0.64 
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Bayesian methods
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Genomic selection

• Yi and Xu 2008 (Genetics)

• Sample from inverse chi square distribution, but 
then sample shape (v) and scale (S2) of the 
distribution
– Reflect absence of knowledge of distribution of QTL 

effects?

– Prior on S2 is uniform, then posterior is gamma

– Prior on v of 1/v, not a conjugate prior = metropolis 
hastings
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Genomic selection

• Yi and Xu 2008 (Genetics)

• Propose sampling σgi
2 from an exponential 

distribution (Bayesian LASSO)
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Genomic selection

• Bayesian LASSO
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Genomic selection

• Bayesian C∏ (Habier et al 2011)

• Two criticisms of BayesB

–Posterior of locus-specific variance has 
only one additional degree of freedom, 
compared to its prior regardless of the 
number of genotypes, so 

– Degree of shrinkage of depends strongly on 
prior

– Little information coming from data

–∏ is treated as known, not estimated 
from the data



Genomic selection

• Bayesian C∏ (Habier et al 2011)

• Use a common σgi
2 across all SNP

–Many degrees of freedom from data

–A “BLUP” for SNP in model

• Estimate ∏ from data

–Sample from 

• Beta(K - m(t) + 1, m(t) + 1).

• Where K is number of SNP, m(t) is the 
number of SNP in the model at iteration t 
(eg. Those not set to zero)



Genomic selection

• Bayesian C∏ (Habier et al 2011)

– Accuracy in German Holstein Friesian data set

• Little improvement in accuracy

• But can draw inferences about trait architecture?

Trait GBLUP BayesA BayesB BayesCpi

Milk Yield 0.48 0.48 0.40 0.43

Fat Yield 0.51 0.56 0.52 0.54

Protein Yield 0.21 0.22 0.17 0.21

Somatic cells 0.17 0.17 0.12 0.14



Genomic selection

• Methods for deriving prediction equation differ 
in assumptions about distribution of QTL effects

– BLUP = normal distribution with known variance

– Ridge regression = normal distribution with prior 
assumption about variance

– BayesA = t-distribution, degree of shrinkage known a-
priori, or sampled

– BayesB = mixture distribution, many effects zero

– BayesianLASSO, double exponential distribution of 
effects

– Bayesian C∏, estimate ∏ from data, common variance 
across SNP


