
Genomic Selection in the era 
of Genome sequencing



Course overview

• Day 1
– Linkage disequilibrium in animal and plant genomes

• Day 2
– Genome wide association studies

• Day 3 
– Genomic selection

• Day 4 
– Genomic selection

• Day 5
– Imputation and whole genome sequencing for genomic 
selection



Imputation

• Why impute?

• Approaches for imputation

• Factors affecting accuracy of 
imputation

• How can imputation give you 
more power?



Why impute?

• Fill in missing genotypes from the lab

• Merge data sets with genotypes on different 
arrays

– Eg. Druet et al. 2010, merged two data sets in 
dairy cattle on alternate arrays 

• Impute from low density to high density

– 7K-> 50K (save $$$)

– 50K->800K

– capture power of higher density?

– Better persistence of accuracy

• Sequence expensive, can we impute to full 
sequence data? 



Core concept

•Identity by state (IBS)

–A pair of individuals have the same allele 
at a locus

•Identity by descent (IBD)

–A pair of individuals have the same 
alleles at a locus and it traces to a 
common ancestor

• Imputation methods determine 
whether a chromosome segment is 
IBD



Core concept 2

• Any individuals in a population may 
share a proportion of their genome 
identical by descent (IBD)

– IBD segments are the same and have 
originated in a common ancestor

•The closer the relationship the longer 
the IBD segments

–Pedigree relationships



Several methods for imputation

•Two main categories:

–Family based

–Population based

–Or combination of the two

–Some of the most effective are Beagle 
(Browning and Browning, 2009), MACH 
(Li et al., 2010), Impute2 (Howie et al., 
2009), AlphaPhase (Hickey et al 2011)
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Finding an IBD segment

0 22 0 2 20

00 2 0 2 2 2

Sire

0 ?2 0 2 2?

?2 ? 0 0 2 0

Progeny



0 22 0 2 20

02 2 0 2 2 2

Sire

0 ?2 0 2 2?

?2 ? 0 0 2 0

Progeny

IBD segment



0 22 0 2 20

02 2 0 2 2 2

Sire

0 22 0 2 20

?2 ? 0 0 2 0

Progeny



Relationships

Sire Dam

Proband

Progeny

Maternal

Relatives

Paternal

Relatives

Long range phasing



Relationships

Sire Dam

Proband

Progeny

Maternal

Relatives

Paternal

Relatives

Long range phasing



Several methods for imputation

•Two main categories:

–Family based

–Population based (exploits LD)

–Or combination of the two

–Some of the most effective are Beagle 
(Browning and Browning, 2009), MACH 
(Li et al., 2010), Impute2 (Howie et al., 
2009), AlphaPhase (Hickey et al 2011)



Population based imputation

Reference 
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Population based imputation

• Hidden Markov Models

–Has “hidden states” 

– For target individuals these are “map” of 
reference haplotypes that have been 
inherited

– Imputation problem is to derive 
genotype probabilities given hidden 
states, sparse genotypes, recombination 
rates, other population parameters



Population based imputation

• Hidden Markov Models

– Example with reference haplotypes

• 011

• 010

• 101

• 001

– What are possible genotypes?



Population based imputation

• Hidden Markov Models

fastPHASE                           BEAGLE



Imputation accuracy

• Depends on 
–Size of reference set 

• bigger the better!

–Density of markers 
• extent of LD, effective population size

–Frequency of SNP alleles

–Genetic relationship to reference



Imputation accuracy sheep

• Density of markers (extent of LD)
– In Dairy cattle

• 3K -> 50K accuracy 0.93

• 7K -> 50K accuracy 0.98 



Imputation accuracy

• Density of markers (extent of LD)
– In Holstein Dairy cattle

• 3K -> 50K accuracy 0.93

• 7K -> 50K accuracy 0.98 



Illumina Bovine HD array

• We genotyped

— 898 Holstein heifers

— 47 Holstein Key ancestor bulls

— 67 Jersey Key ancestor bulls

• After (stringent) QC 634,307 SNPs  



Imputation 50K -> 800K

• Holsteins

Cross validation % Correct

Heifers only 1 96.7%

2 96.7%

Average 96.7%

Heifers 1 97.8%

using key 2 97.7%

ancestors Average 97.7%



Imputation 50K -> 800K

• Jerseys

Cross validation % Correct

1 95.2%

2 95.5%

3 95.3%

4 95.6%

5 96.2%

Average 95.6%



Imputation accuracy

• Rare alleles?



Imputation accuracy

• Relationship to reference?



Imputation of full sequence data

• Effect of map errors?



Why more power with imputation

• High accuracies of imputation 
demonstrate that we can infer 
haplotypes of animal genotyped with 
e.g. 3K accurately

• But potentially large number of 
haplotypes

• With imputed data can test single 
snp, only use 1 degree of freedom, 
rather than number of haplotypes



Why more power with imputation

• Weigel et al. (2010)



Using sequence data in genomic 
selection and GWAS

• Motivation

• Characteristics of sequence data

• Which individuals to sequence?

• Imputation of full sequence data

• Methods for genomic prediction with 
full sequence data

• Examples
–GWAS in Rice, Cattle 



Using sequence data in genomic 
selection and GWAS

• Motivation
–Genome wide association study

• Straight to causative mutation

–Genomic selection (all hypotheses!)
• No longer have to rely on LD, causative 
mutation actually in data set
– Higher accuracy of prediction?

• Better prediction across breeds?
– Assumes same QTL segregating in both breeds

– No longer have to rely on SNP-QTL associations 
holding across breeds

• Better persistence of accuracy across 
generations



Using sequence data in genomic 
selection and GWAS

• Motivation

• Characteristics of sequence data

• Which individuals to sequence?

• Imputation of full sequence

• Methods for genomic prediction with 
full sequence data

• Examples
–GWAS in Rice, Cattle 



Sequence data

• Generates reads of DNA approx. 100 base 
pair (bp) length

• Reads are aligned to a reference genome
– Or they could be assembled de novo

– Assigns each read a location on genome

• Reads have an error rate!
– One error per read

• Information is base pair (ACTG) + Quality 
score for each base
– PHRED score = -10*log10(error rate)

• 0.01 error rate = Q20

• 0.001 error rate = Q30

• 0.0001 error rate = Q40



Read depth

•Each sequenced animal is aligned 
separately to reference

– .bam files are created

•Read depth or fold coverage

Genome

Read depth 7Read depth 5Read



Importance of read depth

• Consider a heterozygous locus (animal carries 2 
different alleles)

– 50/50 chance of observing each allele in every read

• If read depth is low, it is possible to not observe 
an allele and therefore call a het locus 
homozygous

– Read depth 5 � 0.55 = 0.03125  

Genome
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What read depth is sufficient?
• Proportion of genome achieving at least 6x diploid coverage

• 12.5x achieves 90% in simulation below (Shen et al. 2010, 
Suppl. Material)
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Heterozygosity and read depth

• SNP discovery
• Missing some heterozygotes is not critical

– Hopefully picked up in other animals

• Just do more animals to identify SNP

• Animal genotype not used directly

• Genotype calling

•Missing heterozygotes a problem because 
incorrect genotype in downstream analysis

• Statistical methods can be used to correct 
incorrect genotype calls

•Use genotype probabilities, not best guess!



Identification of variants

• Program SAMtools

• stacks aligned bam files of multiple animals

• Calls variants and calculates quality/confidence 
statistics for calls

• http://samtools.sourceforge.net/mpileup.shtml

Genome



Variants in sequence

•SNP

•INDEL

– INsertions and DELetions of DNA 
sections

•Copy number variants (CNV)

–Repeated sections of DNA of various 
lengths

•Most studies to date have 
concentrated on SNP



Filtering of variants

• Reasons for filters:

• Number of artefacts of the 
sequencing process that lead to 
falsely identified variants

• Little evidence for a variant

–Quality scores low

• Reasons against filters:

• Real variants may be lost

–Low frequency SNP often have lower 
quality scores



Variant filters we use (vcf) 
1. Read depth

– Minimum read depth

• Individual genotype calls will be low quality

– Maximum read depth

• Short reads of repetitive regions may be mapped to same locations causing 

massive read depth

2. Mapping quality

– Low quality calls

3. Quality

– Phred score

4. Multiple variants within 5bp window

– Alignment errors and indels can cause shifts � call 2 SNP close together 

instead of 1

– Remove SNP close to indels



Phred quality scores (Q)

• Related to base-calling error probabilities.  

Expressed in a range from 0 to 999 in our data.

• Probabilities are calculated by the following 

formula:

• e.g. Phred of 30 = error rate of 0.001

• Phred of 20 = error rate of 0.01

• Result is probability of each genotype at each 

variant eg. AA=0.95 AT=0.05 TT=0.00

• Use these in BEAGLE!



Imputation of full sequence data

Create BAM files

1. Filter reads on quality 
score, trim ends
2. Remove PCR 
duplicates
3.  Align with BWA

Variant calling

SamTools mPileup
Vcf file -> filter 
(number forward 
/reverse reads of 
each allele, read 
depth, quality, 
filter number of 
variants in 5bp 
window)

Beagle Phasing 
in Reference
Input genotype 
probs from Phred 
scores
QC with 800K

BAM



Differences between SNP chip 
and sequence

• SNP chip
– Sample of SNP

– Higher minor allele frequency

– Limited linkage disequilibrium depending on 
number of SNP

• Sequence
– Contains most variants

• SNP, indels, CNVs, etc

– Allele frequency matches underlying causative 
variant frequency 

– Causative variants included

– High linkage disequilibrium between variants



Using sequence data in genomic 
selection and GWAS

• Motivation

• Characteristics of sequence data

• Which individuals to sequence?

• Imputation of full sequence

• Methods for genomic prediction with 
full sequence data

• Examples
–GWAS in Rice, Cattle 



Which individuals to sequence?

• Those which capture greatest 
genetic diversity?

• Select set of individuals which are 
likely to capture highest proportion 
of unique chromosome segments 



Which individuals to sequence?

• Let total number of individuals in 
population be n, number of individuals 
that can be sequenced be m.

• A = average relationship matrix among n
individuals, from pedigree



Animal Sire Dam

1 0 0

2 0 0

3 0 0

4 1 2

5 1 2

6 1 3

Pedigree

Animal 1 Animal 2 Animal 3 Animal 4 Animal 5 Animal 6

Animal 1 1

Animal 2 0 1

Animal 3 0 0 1

Animal 4 0.5 0.5 0 1

Animal 5 0.5 0.5 0 0.5 1

Animal 6 0.5 0 0.5 0.25 0.25 1

Animals 6 is a half sib of 4 and 5

• An example A matrix……..



Which individuals to sequence?

• Let total number of individuals in 
population be n, number of individuals 
that can be sequenced be m.

• A = average relationship matrix among n 
individuals, from pedigree

• c is a vector of size n, which for each 
animal has the average relationship to the 
population (eg. Sum up the elements of A
down the column for individual i) 



Which individuals to sequence?

• If we choose a group of m animals for 
sequencing, how much of the diversity do 
they capture

• pm = Am
-1cm

– Where Am is the sub matrix of A for the m
individuals, and cm is the elements of the c
vector for the m individuals

• Proportion of diversity = pm’1n



Which individuals to sequence?

• Example



Which individuals to sequence?

• Then choose set of individuals to 
sequence (m) which maximise 
pm’1n

• Step wise regression
–Find single individual with largest pi, set 
ci to zero, next largest pi, set ci to 
zero…..

• Genetic algorithm



Which individuals to sequence?

• Poll Dorset sheep
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Which individuals to sequence?

• Then choose set of individuals to 
sequence (m) which maximise 
pm’1n

• Step wise regression
–Find single individual with largest pi, set 
ci to zero, next largest pi, set ci to 
zero…..

• Genetic algorithm

• No A?  Use G



Using sequence data in genomic 
selection and GWAS

• Motivation

• Characteristics of sequence data 

• Which individuals to sequence?

• Imputation of full sequence data

• Methods for genomic prediction with 
full sequence data

• Examples
–GWAS in Rice, Cattle 



Imputation of full sequence data

• Two groups of individuals
–Sequenced individuals: reference 
population

– Individuals genotyped on SNP array: 
target individuals



Imputation of full sequence data

• Steps:
–Step 1.  Find polymorphisms in sequence 
data

–Step 2.  Genotype all sequenced animals 
for polymorphisms (SNP, Indels)

–Step 3.  Phase genotypes (eg Beagle) in 
sequenced individuals, create reference 
file

–Step 4.  Impute all polymorphisms into 
individuals genotyped with SNP array



Imputation of full sequence data

Create BAM files

1. Filter reads on quality 
score, trim ends
2. Remove PCR 
duplicates
3.  Align with BWA

Variant calling

SamTools mPileup
Vcf file -> filter 
(number forward 
/reverse reads of 
each allele, read 
depth, quality, 
filter number of 
variants in 5bp 
window)

Beagle Phasing 
in Reference
Input genotype 
probs from Phred 
scores
QC with 800K

BAM

Reference file 
for imputation

Beagle Imputation in 
Target

SNP array data in target 
population

Analysis

Genome wide association

Genomic selection

Genotype probabilities



Imputation of full sequence data

• How accurate?



Imputation 50K -> 800K

• Holsteins

Cross validation % Correct

Heifers only 1 96.7%

2 96.7%

Average 96.7%

Heifers 1 97.8%

using key 2 97.7%

ancestors Average 97.7%



Using sequence data in genomic 
selection and GWAS

• Motivation

• Characteristics of sequence data

• Which individuals to sequence?

• Imputation of full sequence data

• Methods for genomic prediction with 
full sequence data

• Examples
–GWAS in Rice, Cattle 



Methods for genomic prediction 
with full sequence

• 14 million SNPs in Holstein Friesian 
cattle?

• Which method is most appropriate

• Priors
–BLUP (GBLUP) -> all SNPs in LD with 
QTL, very small effects

–BayesA -> some SNPs have moderate 
to large effects, rest very small

–BayesB -> many SNPs have zero effect, 
some have small to moderate effect?



Methods for genomic prediction 
with full sequence

• Meuwissen and Goddard 2010
–Simulated population with full sequence 
data, ~ 900 mutations chosen to be 
QTL

–Used BLUP and BayesB to predict GEBV

Meuwissen, Goddard (2010) Genetics 185:623



Methods for genomic prediction 
with full sequence

• Meuwissen and Goddard 2010
–Simulated population with full sequence 
data, ~ 900 mutations chosen as QTL

–Used BLUP and BayesB to predict GEBV

–Large advantage of BayesB over BLUP
• Prior matches their simulated data -> only 
900 QTL amongst millions of SNP

–3% advantage of having mutation in 
data

–Real data??



Methods for genomic prediction 
with full sequence

• Meuwissen and Goddard 2010
–Better persistence of accuracy over 
generations



Genomic selection methods for GWAS?



Using sequence data in genomic 
selection and GWAS

• Motivation

• Characteristics of sequence data

• Which individuals to sequence?

• Imputation of full sequence data

• Methods for genomic prediction with 
full sequence data

• Examples
–GWAS in Rice, Cattle 



GWAS with sequence



GWAS with sequence

• Huang et al. (2010)

— Sequenced 517 rice landraces (inbred lines!) at 1x 
coverage

— Represent ~ 82% of diversity in worlds rice 
cultivars

—Called SNP in sequence pileups

— 3.6 million SNP

—With 1x coverage, could only call genotypes at 
~ 20% of SNP

—Therefore use imputation to fill in missing 
genotype

—Example



GWAS with sequence

• Huang et al. (2010)

• Extent of LD



GWAS with sequence

• Huang et al. (2010)

• Now have 517 lines with 3.6 million SNP genotyped

• Well characterised phenotypes for 14 agronomic traits
• Grain size, flowering date, etc

– Perform GWAS!

– Confirmed known mutations

– Many new mutations



GWAS with sequence

• KIT example

—Earlier genome wide association study for 
proportion of black in Holsteins found 
association with SNP in KIT locus 

—Can we impute sequence in this region and re-
run association study?
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GWAS with sequence

Average fold coverage Filtered SNPs
Concordance 

with 800K
PICKARD-ACRES VIC KAI 10.4 3,061,950
GLENAFTON ENHANCER 10.9 2,934,805 99.9%

BUSHLEA WAVES FABULON 11.3 4,249,998 97.4%

HANOVERHILL STARBUCK 12.5 3,237,681 97.9%

BIS-MAY S-E-L MOUNTAIN ET 12.6 3,009,463 98.5%

SHOREMAR PERFECT STAR 13.6 2,985,205
ROYBROOK STARLITE 14.9 3,421,859 97.6%

TOPSPEED H POTTER 15.0 3,839,627
LOCHAVON RAMESES 16.2 3,986,520
BRAEDALE GOLDWYN 17.2 3,559,227 97.9%

CARENDA GRAVITY 17.8 4,331,849 96.8%
ONKAVALE GRIFFLAND MIDAS 22.5 3,742,799



Imputation of full sequence data

Create BAM files

1. Filter reads on quality 
score, trim ends
2. Remove PCR 
duplicates
3.  Align with BWA

Variant calling

SamTools mPileup
Vcf file -> filter 
(number forward 
/reverse reads of 
each allele, read 
depth, quality, 
filter number of 
variants in 5bp 
window)

Beagle Phasing 
in Reference
Input genotype 
probs from Phred 
scores
QC with 800K

BAM

Reference file 
for imputation

Beagle Imputation in 
Target

SNP array data in target 
population

Analysis

Genome wide association

Genomic selection

Genotype probabilities



GWAS with sequence

• KIT example

— In sequenced bulls, compile list of SNPs/Indels in 
KIT region (352/20)

— Call genotypes for the 372 variants in the 12 bulls

— Use this as reference file for imputing the 372 
variants in 697 bulls with % black phenotype (from 
800K) data 

— Run association study on the 372 variants imputed 

in 697 bulls



GWAS with sequence

• KIT example



GWAS with sequence

• KIT example



1000 bull genomes on the cloud

• We will all need “reference” population of many 
sequenced bulls to impute from 

— SNP, indel  and CNV genotypes

— The more bulls the better!

• We propose a project where we each upload our 
sequence files (BAM) for each bull to a shared 
server 

• Run SNP/indel/CNV calling software every new 100 
bulls uploaded

• Contributors can download SNP/indel/CNV genotype 
file on all bulls to use for imputation anytime

• Partners welcome! 



GWAS with sequence

• An alternative approach to GWAS?
� For a target QTL region, sequence bulls of known QTL 

genotype (eg QQ,Qq,qq)

� Have converted complex trait into a Mendelian trait

� Far fewer individuals required for same power

� Requires knowledge from linkage studies/previous GWAS!

� Which method is more successful? 



Quality of reference genomes?

• Cattle

– Bovine build 4.2

– Annotated 
• But many genes no assigned function

– No Y chromosome yet, X is messy

– ~ 9.5 million putative SNP in dbSNP



Quality of reference genomes?

• Cattle

– Bovine build 4.2

– Annotated 
• But many genes no assigned function

– No Y chromosome yet, X is messy

– ~ 9.5 million putative SNP in dbSNP

– Map of copy number variation?

– Kijas et al. (2010) – 51 CNV detected, 82% spanned at 
least one gene

– Hou et al. (2011) – 682 CNV from SNP array intensity 
data



• Potential of whole genome sequence data

– Enable genome wide association study -> straight to 
causative mutation

– Genomic selection

• No longer have to rely on LD, causative mutation actually 
in data set, Higher accuracy of prediction?, Better 
persistence of accuracy across generations

Conclusions



• Potential of whole genome sequence data

– Enable genome wide association study -> straight to 
causative mutation

– Genomic selection

• No longer have to rely on LD, causative mutation actually 
in data set, Higher accuracy of prediction?, Better 
persistence of accuracy across generations

• Choose individuals to sequence based on genetic 
contribution to population?

• Imputation of target population genotyped with 
SNP arrays

– Caution with low frequency alleles, relationship to 
reference

• Large collaborative projects required for 
bovine/plant communities?

Conclusions


