Genomic Selection in the era

of Genome sequencing
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Course overview

Day 1

— Linkage disequilibrium in animal and plant genomes
Day 2

— Genome wide association studies

Day 3

— Genomic selection

Day 4

— Genomic selection

Day 5

— Imputation and whole genome sequencing for genomic
selection




Imputation

e Why impute?
e Approaches for imputation

e Factors affecting accuracy of
imputation

e How can imputation give you
more power?




Why impute?

Fill in missing genotypes from the lab

Merge data sets with genotypes on different
arrays

— Eg. Druet et al. 2010, merged two data sets in
dairy cattle on alternate arrays

Impute from low density to high density
- 7K-> 50K (save $$9%)
- 50K->800K

— capture power of higher density?
— Better persistence of accuracy

Sequence expensive, can we impute to full
sequence data?




Core concept

eIdentity by state (IBS)

— A pair of individuals have the same allele
at a locus

eIdentity by descent (IBD)

— A pair of individuals have the same
alleles at a locus and it traces to a
common ancestor

e Imputation methods determine
whether a chromosome segment is
IBD




Core concept 2

e Any individuals in a population may
share a proportion of their genome
identical by descent (IBD)

- IBD segments are the same and have
originated in a common ancestor

e The closer the relationship the longer
the IBD segments

— Pedigree relationships




Several methods for imputation

wo main categories:

- Family based

- Population based

— Or combination of the two

— Some of the most effective are Beagle
(Browning and Browning, 2009), MACH
(Li et al., 2010), Impute2 (Howie et al.,
2009), AlphaPhase (Hickey et al 2011)




Several methods for imputation

wo main categories:

- Family based

- Population based

— Or combination of the two

— Some of the most effective are Beagle
(Browning and Browning, 2009), MACH
(Li et al., 2010), Impute2 (Howie et al.,
2009), AlphaPhase (Hickey et al 2011)




Finding an IBD segment
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Relationships
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Several methods for imputation

wo main categories:

- Family based

— Population based (exploits LD)
— Or combination of the two

— Some of the most effective are Beagle
(Browning and Browning, 2009), MACH
(Li et al., 2010), Impute2 (Howie et al.,
2009), AlphaPhase (Hickey et al 2011)




Population based imputation
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Population based imputation

e Hidden Markov Models
— Has “hidden states”

— For target individuals these are "map” of
reference haplotypes that have been
inherited

— Imputation problem is to derive
genotype probabilities given hidden
states, sparse genotypes, recombination
rates, other population parameters

P(Gi|H,8,p) = Z P(GilS,8)P(S|H, p)

g




Population based imputation
e Hidden Markov Models

— Example with reference haplotypes
e 011
e 010
e 101
e 001

— What are possible genotypes?




Population based imputation

e Hidden Markov Models

fastPHASE

L1 and Stephens framework
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Imputation accuracy

e Depends on

— Size of reference set
e bigger the better!

— Density of markers
e extent of LD, effective population size

- Frequency of SNP alleles

— Genetic relationship to reference




Imputation accuracy sheep
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Imputation accuracy

e Density of markers (extent of LD)

—In Holstein Dairy cattle
e 3K -> 50K accuracy 0.93
e /K -> 50K accuracy 0.98




Illumina Bovine HD array

e We genotyped
— 898 Holstein heifers
— 47 Holstein Key ancestor bulls

— 67/ Jersey Key ancestor bulls
o After (stringent) QC 634,307 SNPs




Imputation 50K -> 800K

e Holsteins

Cross validation 9% Correct

Heifers only 1
2
Average

Heifers
using key
ancestors




Imputation 50K -> 800K

e Jerseys

Cross validation 9% Correct

Average 95.6%




Imputation accuracy
e Rare alleles?
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Imputation accuracy
e Relationship to reference?
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Imputation of full sequence data
o Effect of map errors?
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Why more power with imputation

e High accuracies of imputation
demonstrate that we can infer
haplotypes of animal genotyped with
e.g. 3K accurately

e But potentially large number of
haplotypes

e With imputed data can test single
snp, only use 1 degree of freedom,
rather than number of haplotypes
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Figure 2. Correlations between predicted direct genomic values for milk yield and corresponding April 2009 progeny-test PTA using full or
reduced models with 42,552 or 366, 741, 1,468, or 2,942 single SNP covariates, respectively, with or without imputation of masked genotypes
for bulls in the testing set or bulls in the testing set and a randomly chosen 50% of bulls in the training set. The bars denoted as “reference”
correspond to correlations from a full model in which all 42,552 SNP genotypes were left as unmasked in both the training and testing sets.




Using sequence data in genomic
selection and GWAS

e Motivation
e Characteristics of sequence data
e Which individuals to sequence?

e Imputation of full sequence data

e Methods for genomic prediction with
full sequence data

e Examples
- GWAS in Rice, Cattle




Using sequence data in genomic
selection and GWAS

e Motivation

- Genome wide association study
e Straight to causative mutation

— Genomic selection (all hypotheses!)

e No longer have to rely on LD, causative
mutation actually in data set
— Higher accuracy of prediction?

e Better prediction across breeds?
— Assumes same QTL segregating in both breeds
— No longer have to rely on SNP-QTL associations
holding across breeds
e Better persistence of accuracy across
generations




Using sequence data in genomic
selection and GWAS

e Motivation
e Characteristics of sequence data
e Which individuals to sequence?

e Imputation of full sequence

e Methods for genomic prediction with
full sequence data

e Examples
- GWAS in Rice, Cattle




Sequence data

e Generates reads of DNA approx. 100 base
pair (bp) length
e Reads are aligned to a reference genome

— Or they could be assembled de novo
— Assigns each read a location on genome

e Reads have an error rate!
— One error per read

e Information is base pair (ACTG) + Quality
score for each base
— PHRED score = -10*log10(error rate)
e 0.01 error rate = Q20

e 0.001 error rate = Q30
e 0.0001 error rate = Q40




Read depth

e Each sequenced animal is aligned
separately to reference

— .bam files are created
eRead depth or fold coverage

Read __ Read depth 5 ~ Read depth 7

Genome




Importance of read depth

e Consider a heterozygous locus (animal carries 2
different alleles)
- 50/50 chance of observing each allele in every read

o If read depth is low, it is possible to not observe
an allele and therefore call a het locus

homozygous
- Read depth 5 > 0.5°> = 0.03125

Genome




What read depth is sufficient?

e Proportion of genome achieving at least 6x diploid coverage

e 12.5x achieves 90% in simulation below (Shen et al. 2010,
Suppl. Material)
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Heterozygosity and read depth

e SNP discovery

e Missing some heterozygotes is not critical
— Hopefully picked up in other animals

e Just do more animals to identify SNP

e Animal genotype not used directly

e Genotype calling

e Missing heterozygotes a problem because
incorrect genotype in downstream analysis

e Statistical methods can be used to correct
incorrect genotype calls

e Use genotype probabilities, not best guess!




Identification of variants

Program SAMtools
stacks aligned bam files of multiple animals

Calls variants and calculates quality/confidence
statistics for calls

http://samtools.sourceforge.net/mpileup.shtml

Genome




Variants in sequence

eSNP

eINDEL

— INsertions and DELetions of DNA
sections

eCopy number variants (CNV)

— Repeated sections of DNA of various
engths

eMost studies to date have
concentrated on SNP




Filtering of variants

e Reasons for filters:

e Number of artefacts of the
sequencing process that lead to
falsely identified variants

¢ Little evidence for a variant
— Quality scores low

e Reasons against filters:

e Real variants may be lost

— Low frequency SNP often have lower
quality scores




Variant filters we use (vcf)

1. Read depth

—  Minimum read depth
e Individual genotype calls will be low quality

—  Maximum read depth

* Short reads of repetitive regions may be mapped to same locations causing
massive read depth

2. Mapping quality
— Low quality calls
3. Quality

—  Phred score

4.  Multiple variants within Sbp window

— Alignment errors and indels can cause shifts = call 2 SNP close together
instead of 1

— Remove SNP close to indels




Phred quality scores (Q)

e Related to base-calling error probabilities.
Expressed 1in a range from O to 999 1n our data.

e Probabilities are calculated by the following
formula:

e ¢.g. Phred of 30 = error rate of 0.001
. Phred of 20 = error rate of 0.01

e Result 1s probability of each genotype at each
variant eg. AA=0.95 AT=0.05 TT=0.00

e Use these in BEAGLE!




Imputation of full sequence data

Create BAM files

1. Filter reads on quality
score, trim ends

2. Remove PCR
duplicates

3. Align with BWA

Variant calling

SamTools mPileup
Vcf file -> filter
(number forward
/reverse reads of
each allele, read
depth, quality,
filter number of
variants in 5bp
window)

Beagle Phasing
in Reference
Input genotype
probs from Phred
scores

QC with 800K




Differences between SNP chip
and sequence

e SNP chip
— Sample of SNP
— Higher minor allele frequency

— Limited linkage disequilibrium depending on
number of SNP

e Sequence
— Contains most variants
e SNP, indels, CNVs, etc

— Allele frequency matches underlying causative
variant frequency

— Causative variants included
— High linkage disequilibrium between variants




Using sequence data in genomic
selection and GWAS

e Motivation
e Characteristics of sequence data
e Which individuals to sequence?

e Imputation of full sequence

e Methods for genomic prediction with
full sequence data

e Examples
- GWAS in Rice, Cattle




Which individuals to sequence?

e Those which capture greatest
genetic diversity?

e Select set of individuals which are
likely to capture highest proportion
of unigue chromosome segments




Which individuals to sequence?

o [ et total number of individuals in
population be n, number of individuals
that can be sequenced be m.

e A = average relationship matrix among n
individuals, from pedigree




e An example A matrix

Pedigree
Animal Sire Dam
1 0 0
2 0 0
3 0 0
4 1 2
5 1 2
6 1 3

Animal 1 Animal2 Animal3 Animal 4 A\nimaIS Animal 6

Animal 1 1

Animal 2 0 1

Animal 3 0 0 1

Animal 4 0.5 0.5 0 1

Animal 5 0.5 0.5 0 0.5 1
Animal 6 0.5 0 0.5

0.25 @ 1




Which individuals to sequence?

o [ et total number of individuals in
population be n, number of individuals
that can be sequenced be m.

e A = average relationship matrix among n
individuals, from pedigree

e C is a vector of size n, which for each
animal has the average relationship to the
population (eg. Sum up the elements of A
down the column for individual i)




Which individuals to sequence?

o If we choose a group of m animals for
sequencing, how much of the diversity do
they capture

* Pm = Anicyy
- Where A, is the sub matrix of A for the m

individuals, and c, is the elements of the ¢
vector for the m individuals

e Proportion of diversity = p,,,"1n




Which individuals to sequence?

e Example




Which individuals to sequence?

e Then choose set of individuals to
sequence (m) which maximise
Pm 1N

e Step wise regression

- Find single individual with largest p;, set
c; to zero, next largest p,, set ¢; to

e Genetic algorithm




Which individuals to sequence?

e Poll Dorset sheep
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Which individuals to sequence?

e Then choose set of individuals to
sequence (m) which maximise
Pm 1N

e Step wise regression

- Find single individual with largest p;, set
c; to zero, next largest p,, set ¢; to

e Genetic algorithm

e NO A? Use G




Using sequence data in genomic
selection and GWAS

e Motivation
e Characteristics of sequence data
e Which individuals to sequence?

e Imputation of full sequence data

e Methods for genomic prediction with
full sequence data

e Examples
- GWAS in Rice, Cattle




Imputation of full sequence data

e Two groups of individuals

— Sequenced individuals: reference
population

— Individuals genotyped on SNP array:
target individuals




Imputation of full sequence data

e Steps:
—Step 1. Find polymorphisms in sequence
data

— Step 2. Genotype all sequenced animals
for polymorphisms (SNP, Indels)

— Step 3. Phase genotypes (eg Beagle) in
sequenced individuals, create reference
file

- Step 4. Impute all polymorphisms into
individuals genotyped with SNP array




Imputation of full sequence data

Create BAM files

1. Filter reads on quality
score, trim ends

2. Remove PCR
duplicates

3. Align with BWA

Analysis

Variant calling

SamTools mPileup
Vcf file -> filter
(number forward
/reverse reads of
each allele, read
depth, quality,
filter number of
variants in 5bp
window)

Beagle Phasing
in Reference
Input genotype
probs from Phred
scores

QC with 800K

Reference file
for imputation

Beagle Imputation in

Genome wide association Genotype probabilities Target

SNP array data in target
population

Genomic selection




Imputation of full sequence data

e How accurate?




Imputation 50K -> 800K

e Holsteins

Cross validation 9% Correct

Heifers only 1
2
Average

Heifers
using key
ancestors




Using sequence data in genomic
selection and GWAS

e Motivation
e Characteristics of sequence data
e Which individuals to sequence?

e Imputation of full sequence data

e Methods for genomic prediction with
full sequence data

e Examples
- GWAS in Rice, Cattle




Methods for genomic prediction
with full sequence

e 14 million SNPs in Holstein Friesian
cattle?

e Which method is most appropriate

e Priors

- BLUP (GBLUP) -> all SNPs in LD with
QTL, very small effects

— BayesA -> some SNPs have moderate
to large effects, rest very small

- BayesB -> many SNPs have zero effect,
some have small to moderate effect?




Methods for genomic prediction
with full sequence

e Meuwissen and Goddard 2010

- Simulated population with full sequence
data, ~ 900 mutations chosen to be
QTL

— Used BLUP and BayesB to predict GEBV

The accuracy of the predictions of total genetic value (*=SE) in the TEST1 data set when the training data contained
T = 200 individuals and GWBLUP or BayesB is used to estimate the marker effects
Causative SNPs
GWBLUP BayesB
Data Excluded Included Excluded Included

3 QTL 0.503 = 0.011 0.508 = 0.011 0.938 *= 0.013 0.973 = 0.004
30 QTL 0.491 = 0.016 0.493 = 0.010 0.806 *= 0.023 0.826 = 0.019

Meuwissen, Goddard (2010) Genetics 185:623




Methods for genomic prediction
with full sequence

e Meuwissen and Goddard 2010

- Simulated population with full sequence
data, ~ 900 mutations chosen as QTL

— Used BLUP and BayesB to predict GEBV

- Large advantage of BayesB over BLUP

e Prior matches their simulated data -> only
900 QTL amongst millions of SNP

- 3% advantage of having mutation in
data

— Real data??




Methods for genomic prediction

with

full sequence

e Meuwissen and Goddard 2010

— Better persistence of accuracy over
generations

Causal SNPs

Excluded
Included

TEST]: TEST2:
T =200, L = 1: T=200, L =1:
30 QTL 30 QTL

0.806 = 0.023 0.806 = 0.022
0.826 = 0.019 0.824 = 0.019




Genomic selection methods for GWAS?




Using sequence data in genomic
selection and GWAS

e Motivation
e Characteristics of sequence data
e Which individuals to sequence?

e Imputation of full sequence data

e Methods for genomic prediction with
full sequence data

e Examples
- GWAS in Rice, Cattle




GWAS with sequence

ARTICLES

nature
genetlcs

Genome-wide association studies of 14 agronomic traits
in rice landraces

Xuehui Huang 219, Xinghua Wei*!?, Tao Sang®'?, Qiang Zhao'->!%, Qi Feng"'?, Yan Zhao!, Canyang Li!,
Chuanrang Zhu!, Tingting Lu!, Zhiwu Zhang®, Meng Li*%, Danlin Fan!, Yunli Guo!, Ahong Wang!, Lu Wang!,
Liuwei Deng!, Wenjun Li!, Yigi Lu!, Qijun Weng!, Kunyan Liu!, Tao Huang!, Taoying Zhou!, Yufeng Jing!,
Wei Li!, Zhang Lin!, Edward S Buckler>7, Qian Qian?, Qi-Fa Zhang®, Jiayang Li® & Bin Han!2

Uncovering the genetic basis of agronomic traits in crop landraces that have adapted to various agro-climatic conditions is
important to world food security. Here we have identified ~3.6 million SNPs by sequencing 517 rice landraces and constructed

a high-density haplotype map of the rice genome using a novel data-imputation method. We performed genome-wide association
studies (GWAS) for 14 agronomic traits in the population of Oryza sativa indica subspecies. The loci identified through GWAS
explained ~36% of the phenotypic variance, on average. The peak signals at six loci were tied closely to previously identified
genes. This study provides a fundamental resource for rice genetics research and breeding, and demonstrates that an approach
integrating second-generation genome sequencing and GWAS can be used as a powerful complementary strategy to classical
biparental cross-mapping for dissecting complex traits in rice.




GWAS with sequence

e Huang et al. (2010)

— Sequenced 517 rice landraces (inbred lines!) at 1x
coverage

— Represent ~ 82% of diversity in worlds rice
cultivars

— Called SNP in sequence pileups
— 3.6 million SNP

— With 1x coverage, could only call genotypes at
~ 20% of SNP

— Therefore use imputation to fill in missing
genotype

— Example




GWAS with sequence

e Huang et al. (2010)
e Extent of LD
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GWAS with sequence

e Huang et al. (2010)
e Now have 517 lines with 3.6 million SNP genotyped

e Well characterised phenotypes for 14 agronomic traits
e Grain size, flowering date, etc

40 50 5._1 &2 53 54 55686 ?.7 58 589
Chromosome 5 (Mb)

— Perform GWAS! A ——
N | | % . e |

gSW5 LD: 72 kb

— Confirmed known mutations

— Many new mutations ?6.9 170174 172173174 17547.6177 178 179
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GWAS with sequence

e KIT example

— Earlier genome wide association study for
proportion of black in Holsteins found
association with SNP in KIT locus

0 20000000 40000000 60000000 80000000 100000000 120000000
Position (bp)

— Can we impute sequence in this region and re-
run association study?




GWAS with sequence

Concordance
Average fold coverage  Filtered SNPs with 800K
PICKARD-ACRES VIC KAI 10.4 3,061,950
GLENAFTON ENHANCER 10.9 2,934,805 99.9%
BUSHLEA WAVES FABULON 11.3 4,249,998 97.4%
HANOVERHILL STARBUCK 12.5 3,237,681 97.9%
BIS-MAY S-E-L MOUNTAIN ET 12.6 3,009,463 98.5%
SHOREMAR PERFECT STAR 13.6 2,985,205
ROYBROOK STARLITE 14.9 3,421,859 97.6%
TOPSPEED H POTTER 15.0 3,839,627
LOCHAVON RAMESES 16.2 3,986,520
BRAEDALE GOLDWYN 17.2 3,559,227 97.9%
CARENDA GRAVITY 17.8 4,331,849 96.8%
ONKAVALE GRIFFLAND MIDAS 22.5 3,742,799




Imputation of full sequence data

Create BAM files

1. Filter reads on quality
score, trim ends

2. Remove PCR
duplicates

3. Align with BWA

Analysis

Variant calling

SamTools mPileup
Vcf file -> filter
(number forward
/reverse reads of
each allele, read
depth, quality,
filter number of
variants in 5bp
window)

Beagle Phasing
in Reference
Input genotype
probs from Phred
scores

QC with 800K

Reference file
for imputation

Beagle Imputation in

Genome wide association Genotype probabilities Target

SNP array data in target
population

Genomic selection




GWAS with sequence

o KIT example

— In sequenced bulls, compile list of SNPs/Indels in
KIT region (352/20)

— Call genotypes for the 372 variants in the 12 bulls

— Use this as reference file for imputing the 372
variants in 697 bulls with % black phenotype (from
800K) data

— Run association study on the 372 variants imputed
in 697 bulls




GWAS with sequence

e KIT example
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GWAS with sequence

e KIT example

800K SNP
.« Sequence SNP

0o - A _ _ _
71500000 71600000 71700000 71800000 71900000 72000000 72100000
Position bp




1000 bull genomes on the cloud

e We will all need “reference” population of many
sequenced bulls to impute from
— SNP, indel and CNV genotypes
— The more bulls the better!

e We propose a project where we each upload our
sequence files (BAM) for each bull to a shared
server

e Run SNP/indel/CNV calling software every new 100
bulls uploaded

e Contributors can download SNP/indel/CNV genotype
file on all bulls to use for imputation anytime

e Partners welcome!




GWAS with sequence

e An alternative approach to GWAS?

For a target QTL region, sequence bulls of known QTL

genotype (eg QQ,Qq,qq)
Have converted complex trait into a Mendelian trait

Far fewer individuals required for same power
Requires knowledge from linkage studies/previous GWAS!

Which method is more successful?




Quality of reference genomes?

e (Cattle
Bovine build 4.2

Annotated
e But many genes no assigned function

No Y chromosome yet, X is messy
~ 9.5 million putative SNP in dbSNP

Bos taurus breed Hereford chromosome 14, Btau_4.2, whole genome shotgun sequence

NCBI Reference Sequence: NC_007312.4
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Genome Project. Steven Salzberg and colleagues
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in-progress large-scale and analysis generated by the have updated their assembly of

in Map Viewer.
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Quality of reference genomes?

e (Cattle
Bovine build 4.2

Annotated
e But many genes no assigned function

No Y chromosome yet, X is messy
~ 9.5 million putative SNP in dbSNP

Map of copy number variation?

Kijas et al. (2010) - 51 CNV detected, 82% spanned at
least one gene

Hou et al. (2011) - 682 CNV from SNP array intensity
data




Conclusions

e Potential of whole genome sequence data

— Enable genome wide association study -> straight to
causative mutation

— Genomic selection

e No longer have to rely on LD, causative mutation actually
in data set, Higher accuracy of prediction?, Better
persistence of accuracy across generations
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Choose individuals to sequence based on genetic
contribution to population?

Imputation of target population genotyped with

SNP arrays

— Caution with low frequency alleles, relationship to
reference

Large collaborative projects required for

bovine/plant communities?




