
GS3
Genomic Selection — Gibbs Sampling — Gauss Seidel

(and BayesCπ)

Andrés Legarra 1 2 Anne Ricard 3 4 Olivier Filangi 5 6

October 11, 2011

1andres.legarra [at] toulouse.inra.fr
2INRA, UR 631, F-31326 Auzeville, France
3anne.ricard [at] toulouse.inra.fr
4INRA, UMR 1313, 78352 Jouy-en-Josas, France
5olivier.filangi [at] rennes.inra.fr
6INRA, UMR 598 35042 Rennes, France



This program has been partially financed by FEDER Eu-
ropean funds through POCTEFA: http://www.poctefa.eu/.

1

http://www.poctefa.eu/


Copyright (C) 2010 A Legarra, A Ricard, O Filangi

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.
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1 Introduction

This draft describes using and understanding a software for genome-wide
genetic evaluations and validations, inspired in the theory by [11], and used
for own our research in [9].

In short: it estimates effects of SNPs, either using a priori normal distri-
butions (GBLUP), or the Bayesian Lasso [13, 1, 8] or a mixture of π normal
and 1 − π a mass point at 0, namely BayesC(Pi) [5, 2]. Note that our def-
inition of π here is opposite to those authors: π = the fraction of SNPs
“having” an effect.

The program is self-contained, using modules from Ignacy Misztal’s BLUPF90
distribution at http://nce.ads.uga.edu/~ignacy. Some functions and
subroutines have been taken from the Alan Miller web page at http://

users.bigpond.net.au/amiller/. It has been tested with NAG f95, ifort
and gfortran >= 4.3. Gustavo de los Campos helped us with the heteroge-
nous variances and an R code for the Bayesian Lasso.

The computing methods have been described in [7], as well as in [2].

1.1 History

We wrote this program to implement genome-wide genetic evaluation (aka
genomic selection) in mice [9], as there was nothing available around. The
program uses Gibbs sampling, by means of an unconventional Gibbs sampling
scheme [7]. It accepts quite general models.

We added BayesCPi end 2010, motivated basically for GWAS; and Bayesian
Lasso in August 2011 as our previous version was not very user-friendly.

2 Background

Recently, the availability of massive “cheap” marker genotyping raised up
the question on how to use these data for genetic evaluation and marker
assisted selection. Proposals by [6, 11] among others, use a linear model for
this purpose, in which each marker variant across the genome is assigned a
linear effect, as follows:

yi =
n∑

j=1

(zijkajk) + ei

where yi is the phenotype of the i-th animal, zijk is an indicator covariate
for the i-th animal and the j-th marker locus in its k-th allelic form, and ei
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is a residual term. Hereinafter and for the sake of clarity we will refer to ajk
as “marker locus effects”.

For the sake of simplicity, we further assumed biallelic loci and a simpler
model as follows. In the j-th locus, there are two possible alleles for each SNP
(say 1 and 2), and there are three possible genotypes: “11”, “12” and “22”.
We arbitrarily assign the value +1

2
aj to the allele 1 and the value −1

2
aj to

the allele 2. This follows a classical parameterization in which aj is half the
difference between the two homozygotes [10]. These are the additive effects
of the SNP’s and they can be thought of as classical substitution effects in
the infinitesimal model.

As for the dominant effect dj, it comes up when the genotype is “12”.

3 Models

3.1 General model

The following kind of linear models is supported:

y = Xb + Za + Wd + Tu + Sc + e (1)

Including any number and kind (cross-classified, covariates) fixed effects
(b), and random (multivariate normal) additive a and dominant d marker
locus effects, polygenic infinitesimal effects u, and random environmental
effects c.

If the prior distribution of a is considered to be normal [14], this model is
often called GBLUP. Random effects have associated variance components.
You can estimate them using the software, or (much faster), if you have
previous estimates of genetic variance σ2

u, you can use an approximate formula
which is extensively discussed in [3]: σ2

a = σ2
u/2

∑
piqi where pi is the allelic

frequency at SNP i.

3.2 Heterogeneity of variances

Heterogeneity of variances in the residual is accepted (v.gr., for use of DYD’s
with their accuracies) through a column of weights. These works as follows:
let ωi be the weight for record i. These implies that the distribution for yi
is:

yi| · · · = N(ŷi, σ
2
e/ωi), where ŷi = xib + zia + wid + tiu + sic.

Thus e ∼ N(0,R), where Ri,i = σ2
e/ωi.

In a typical case, weights ω are reliabilities of DYD’s expressed as “equiv-
alent daughter contributions”.
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3.3 Submodels

Any submodel from the above can be used but random effects can only be
included once, e.g., there is no possibility of including two random environ-
mental effects (say litter and herd-year-season).

3.4 Mixture (BayesCPi) modelling of marker locus ef-
fects

It is reasonable to assume that most marker loci are not in linkage dise-
quilibrium with markers. A way of selecting a subset of them is by fixing a
non-negligible a priori probability of their effects to be zero. Method BayesB
[11] achieved this through variance components having values of zero. An
alternative approach is to set up an indicator variable (δ) stating whether
the marker has any effect (1) or not (0). That is, the model becomes:

yi = other effects +
n∑

j=1

(zijajδj) + ei

with δj = (0, 1). The distribution of δ = (δ1 . . . δn) can be posited as a
binomial, with probability π. This model (a mixture model) is more parsi-
monious than [11] and MCMC is straightforward [2]. On the other hand a
prior distribution has to be postulated for π, and this is a beta distribution.
Details can be found in [5].

3.5 Bayesian Lasso

The Lasso (least absolute shrinkage and selection operator [13]) combines
variable selection and shrinkage. Its Bayesian counterpart, the Bayesian
Lasso [12] provides a more natural interpretation in terms of a priori dis-
tributions. In particular, Bayesian Lasso provides a fully parametric model
with a simple Gibbs sampler implementation. Further, the exponential dis-
tribution of the Lasso is thought to reflect reasonably well the nature of
quantitative trait locus (QTL) effects [4]. The Bayesian Lasso has been used
in genomic selection with good results [1, 8]. There are two possible im-
plementations of the Bayesian Lasso [13, 12]; [8] compared both. In this
program, only Tibshirani’s implementation is used; this was called BL2Var
by [8]. To use Park & Casella ’s [12], I recommend package BLR for R,
available in http://cran.r-project.org/web/packages/BLR/index.html.

For an individual SNP, the prior distribution is thus as follows:
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Pr(ai|λ) =
λ

2
exp(−λ|ai|)

But this can be written as:

Pr(ai|τ 2) = N(0, τ 2i )

Pr(τ 2i ) =
λ2

2
exp(−λ2|τ 2i |)

So, basically we are estimating individual variances fo each SNP (as in
BayesB). These variances can be used to weight each SNP when constructing
a genomic relationship matrix.

3.6 A priori information

Prior inverted-chi squared distributions can be postulated for variance com-
ponents σ2

a, σ2
d, σ2

u, σ2
c , σ2

e for estimation with VCE. These are also starting
values. For ease of use, we have considered that beta distributions (with α
and β parameters) for π and inverted-chi squared distributions for the dif-
ferent variances. Note that values of α = 0 or β = 0 will cause problems
because the Beta distribution will be ill-defined. Note also that

• α = 1 , β = 1 → uniform distribution on π.

• α = 1 , β = 10d10 → π almost certainly close to 0 (most SNPs have
no effect).

• α = 10d8 , β = 10d10 → π almost exactly fixed to 0.01 (on average,
10% SNPs will have an effect).

These prior distributions are used when a full MCMC is run but not for
BLUP estimation or in the PREDICT option.

For λ the prior is bounded between 0 and 107.

4 Functionality

4.1 MCMC

A full MCMC is run with the keyword VCE. This samples all possible un-
knowns (y,b, a,d,u, c, σ2

a, σ
2
d, σ

2
u, σ

2
c , σ

2
e) and δ and hyperparameter π if re-

quested . Output are samples of variance components components and π and
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a posteriori means for b, a,d,u, c. “Generalized” genomic breeding value es-
timates (EBV’s) are also in the output.

Continuation (in the case of sudden interruption or just the desire of
running more iterations) are possible via a specific keyword (but not for
the Bayesian Lasso). The continuation is done by reading the last saved
state of the MCMC chain, so be careful not to delete that file (named
parameter_file_cont).

4.2 BLUP

BLUP is defined here in the spirit of Henderson’s BLUP, as in [11]. Therefore
it is an estimator that assumes known variances for all random effects and
δ = 1, π = 1 (i.e. there is no filtering on which markers trace QTLs). The
keyword is BLUP.

4.3 MCMCBLUP

Same as before, but random effects are estimated via Gibbs sampler (assum-
ing known variances). These provides standard errors of the estimates. The
keyword is MCMCBLUP.

4.4 PREDICT

Option PREDICT computes estimates of the prediction of phenotype given
model estimates. This is useful for cross-validation, but for computation
of overall individual genetic values as well, if any of a,d,u are included.
Additive values would be a,u. The keyword is PREDICT.

For example, if you have candidates for selection, create a file with dummy
phenotypes (e.g. 0) and pass them through PREDICT.

5 Use

5.1 Parameter file

This is an example of a typical file running a full MCMC analysis. It is quite
messy :-(. Be careful, the order has to be kept!

DATAFILE

./exo_data.txt

PEDIGREE FILE

./pedigri.dat
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GENOTYPE FILE

./exo_genotypes.txt

NUMBER OF LOCI (might be 0)

10946

METHOD (BLUP/MCMCBLUP/VCE/PREDICT)

VCE

SIMULATION

F

GIBBS SAMPLING PARAMETERS

NITER

10

BURNIN

2

THIN

10

CONV_CRIT (MEANINGFUL IF BLUP)

1d-4

CORRECTION (to avoid numerical problems)

1000

VARIANCE COMPONENTS SAMPLES

var2

SOLUTION FILE

solutions2

TRAIT AND WEIGHT COLUMNS

1 0 #weight

NUMBER OF EFFECTS

5

POSITION IN DATA FILE TYPE OF EFFECT NUMBER OF LEVELS

6 cross 1

5 add_animal 2272

7 perm_diagonal 2000

8 add_SNP 0

8 dom_SNP 0

VARIANCE COMPONENTS (fixed for any BLUP, starting values for VCE)

vara

2.52d-04 2

vard

1.75d-06 2

varg

3.56 2

varp

2.15 2

vare
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0.19 2

RECORD ID

5

CONTINUATION (T/F)

F

MODEL (T/F for each effect)

T T T T T

A PRIORI a

1 1

a PRIORI D

1 1

USE MIXTURE (BAYES C)

T

Let analyze by logical sections.

5.1.1 Files and input-output

This should be self-explanatory. If you do not have pedigree file, put a blank
line.

DATAFILE

./exo.txt

PEDIGREE FILE

./pedigri.dat

GENOTYPE FILE

./exo_genotypes.txt

...

VARIANCE COMPONENTS SAMPLES

var.cage.animal.txt

SOLUTION FILE

solutions.cage.animal.txt

Note that the continuation file is automatically created as
parameter file cont.

Other files automatically created are predictions (if PREDICT) and
parameter file EBVs with estimated breeding values.

5.1.2 Model features

NUMBER OF LOCI (might be 0)

10946

METHOD (BLUP/MCMCBLUP/VCE/PREDICT)
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BLUP

...

TRAIT AND WEIGHT COLUMNS

1 0 #column 0 for weight means no weight

NUMBER OF EFFECTS

5

POSITION IN DATA FILE TYPE OF EFFECT NUMBER OF LEVELS

6 cross 1

5 add_animal 2272

7 perm_diagonal 600

8 add_SNP 0

8 dom_SNP 0

...

MODEL (T/F for each effect)

T T T T T

...

USE MIXTURE (BAYESC)

T

In the TRAIT AND WEIGHT COLUMNS the column of trait and its weight
have to be specified. If the column for weight is 0, then no weight is assumed.

The number of loci is the total number of SNPs (but this is again com-
puted from the data file).

For the methods, see above.
Write as many lines under POSITION... as number of effects. The

POSITION means in which the column the effect is located in the data file
(which has to be in free format, i.e., columns separated by spaces). This is
irrelevant for add SNP and dom SNP, they are read from genotype file. The
TYPE OF EFFECT is one of the following (with their respective keywords):

• cross generic cross-classified ”fixed” effect

• cov generic covariable

• add SNP additive SNP effect

• dom SNP dominant SNP effect

• add animal additive infinitesimal effect

• (perm diagonal) generic environmental random effect
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You can put in your model as many generic covariables and cross-classified
“fixed” effects as you want but you can put only one (or none) of the other.

The NUMBER OF LEVELS has to be 1 for covariables (no possibility for
nested covariables and the like); for the SNP effects, it is determined by the
NUMBER OF LOCI.

The MODEL statement allows to quickly change the model fixing a logical
variable in model to true (t) or false (f). But using this feature quickly
becomes confusing.

The USE MIXTURE (BAYESC) statement starts (if VCE) the BayesCPi method.

5.1.3 How to use the Bayesian Lasso

This is done adding at the end of the parameter file exactly the following
line: OPTION BayesianLasso Tibshirani.

And also:

• Setting option as VCE

• Putting USE MIXTURE as F

5.1.4 MCMC and convergence features

GIBBS SAMPLING PARAMETERS

NITER

10000

BURNIN

2000

THIN

10

CONV_CRIT (MEANINGFUL IF BLUP)

1d-4

CORRECTION (to avoid numerical problems)

1000

That is, a number of iterations of 10000 with a burn-in of 2000 and a thin
interval of 10. The convergence criteria CONV CRIT is used for BLUP, where
Gauss Seidel with Residual Update is used [7]. The CORRECTION is used for
this same strategy. Rules of thumb are:

• For MCMC: number of iterations of 100000 and burn-in of 20000. This
is a minimum if you include SNPs and you estimate variances. Correc-
tion every 10000 iterations.
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• For BLUP (known variances): number of iterations of 10000 (it will stop
before); put a convergence criteria of 10−8 (1d-8) and correction every
100 iterations. If you want a quick result, you may put a convergence
criteria of 10−4, this resulted in negligible errors in our work.

5.1.5 A priori and starting information

VARIANCE COMPONENTS (fixed for any BLUP, starting values for VCE)

vara

2.52d-04 -2

vard

1.75d-06 -2

varg

3.56 -2

varp

2.15 -2

vare

0.19 -2

RECORD ID

5

CONTINUATION (T/F)

F

...

A PRIORI a

1 10

a PRIORI D

1 1

Under VARIANCE COMPONENTS initial or a priori values are given. If the
strategy is BLUP, these are the known variances; otherwise for MCMC, these
are a priori distributions (inverted chi squared) for variance components. The
first value is the expectation of the a priori distribution; the second one are
the degrees of freedom. If the degrees of freedom are -2, these are “flat”
(improper) distributions (roughly) equivalent to assumptions under REML.

Under A PRIORI the proportions of the BayesCPi mixture are given as
values of the (in the example α = 1, β = 10; in this order) parameters of the
Beta distribution.

The RECORD ID is used to trace the records across the cross-validation
process. This should be numeric field with a unique number for each record
(not necessarily correlative).

The CONTINUATION statement implies this run (a MCMC one) is a con-
tinuation of a previous, interrupted one. If this is the case, a new file with
variance components samples is created, as variances file_cont.
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5.2 Pedigree file

The pedigree file has three columns: animal, sire, dam, separated by white
spaces (free format). All have to be renumbered consecutively from 1 to n.
Unknown parents are identified as 0. A fragment follows:

342 0 0

343 0 0

344 0 0

345 150 323

346 104 277

347 91 263

348 81 253

349 141 314

350 157 330

5.3 Data file

The format is free format (e.g. column separated by spaces). Trait values,
covariables, cross-classified effects (coded from 1 to the number of levels),
and the record ID can be in any order.

20.3 1.08004 0.952123 1.45443 345 1 69

26.7 0.99726 1.01302 1.13901 346 2 27

19.5 1.08285 0.900454 1.33243 347 2 43

22.2 1.02697 1.01719 0.92849 348 2 2

17.3 1.05095 0.958695 1.42519 349 1 218

18.1 1.0204 1.05445 0.384847 350 2 17

25.6 0.95566 0.947974 2.06488 351 2 57

20.6 1.01382 0.921759 1.59988 352 2 36

17.3 1.01025 0.99182 1.11917 353 1 550

16.3 1.00517 0.993156 0.815969 354 2 66

The first four columns are the trait values, the 5th column is the animal
ID (coded as in the pedigree file), the 6th is a cross-classified sex effect, the
7th column is the “cage” effect.

5.4 Genotype file

This has to be in fixed format, i.e. id from column i to j and SNPs from
column k to l. The format is detected by reading the first line and looking
for the first space from column 50 backwards. The SNP effects have to be in
one single column, coded as 0/1/2 for AA/Aa/aa (i.e., no letters, no triallelic
SNP); a value of 5 implies a missing value (see below). No space is allowed
among SNPs. An example (41 SNP loci) follows:
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45 11112121112121121102111121110101112021000

346 11211112112110211111211121110112012021000

347 20222222202020220202222222220202002022000

1358 11112121112121121102111121110101112021000

NOTE If the number of SNPs is small, the position of the last SNP
will be before column 50. If this is the case, insert a fixed number of spaces,
so that the position of the last SNP will be after column 50 and the space
between ID and SNPs before column 50. For instance:

45 00

346 00

347 20

1348 10

or

45 00

346 00

347 20

1348 10

Note that if your SNP column is buggy (less or more SNP than expected)
you might have unpredictable results.

5.5 Missing values of traits or genotypes

For estimation, missing values of traits in are not allowed! Please clean
your data set first. For prediction (keyword PREDICT), put whatever numeric
column you like or a column with 0’s.

If there are missing values for SNP effects, animals are set to the average
of the population for additive SNP effects. Nothing is done for dominant
effects (i.e., covariate is set to 0).

5.6 Variations

5.6.1 Changing random seeds

If you want to check your results with a different run, you can change the
random seeds in MODULE Ecuyer_random, calling subroutine init_seeds at
the beginning of the main program.
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5.7 Compiling

The Fortran code is pretty standard, although some of the libraries might
require some compiler switchs for portability. The main program uses a list
structure using “allocatable components”, aka TR 15581, which is standard
in Fortran95 and available in most compilers, in particular in the free (GNU
GPL licensed) compilers gfortran (>= 4.3) and g95.

5.8 Run

Running is as simple as calling it from the command line and answering
about the parameter file:

legarra@cluster:~/mice/gsiod/gs_sparse$ ./gs3

what parameter file?

together.cage.par

5.9 Output

The program does some internal checking and informative printouts, as fol-
lows:

----------------------

-- GS3 --

----------------------

by A.Legarra

A. Ricard, O. Filangi

INRA, FRANCE

03/12/2010

----------------------

03/12/2010 16:11:29

parameter file:

together.031210.par

data file:

./exo_data.txt

with: 1884 records

reading positions 6 5 7 0 0

the record id is in column 5

trait read in 1 with weight in col 0

pedigree file:

./pedigri.dat

with: 2272 records read

genotype file:

./exo_genotypes.txt
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with: 1884 records read

model with 5 effects=

-> generic cross-classified ’fixed’ effect in position 6

with 2 levels

-> additive infinitesimal effect in position 5

with 2272 levels

-> generic environmental random effect in position 7

with 2000 levels

-> additive SNP effect in position 0

with 10946 levels

-> dominant SNP effect in position 0

with 10946 levels

for a total of 26166 equations

length(in_data)= 7

reading format(i10,1x,10946i1)

--------------------------

With the BLUP option convergence is shown:

eps: 6.13867049738422

10 ef 1 to 3 18.1022540273806 22.4239450726179

0.764741819531106 vara,vard,varg,varp,vare,pa(1),pd(1)

2.520000000000000E-004 1.750000000000000E-006 3.56000000000000

2.15000000000000 0.190000000000000 0.500000000000000

0.500000000000000

03/12/2009 08:07:07

eps: 0.953530105950441

20 ef 1 to 3 18.1146884454257 22.4040588447695

0.651695870345913 vara,vard,varg,varp,vare,pa(1),pd(1)

2.520000000000000E-004 1.750000000000000E-006 3.56000000000000

2.15000000000000 0.190000000000000 0.500000000000000

0.500000000000000

03/12/2009 08:07:09

...

03/12/2009 08:11:48

1382 eps 9.952282839310986E-005

solutions stored in file:

solutions.cage.animal.txt

transforming X -> divide, weighted = F

transforming yZW ->divideweighted = F

EBV’s written in together.cage.par_EBVs

and the PREDICT option:

--predicting--

predicting ./exo2.txt from solutions in solutions.cage.animal.txt

to file ’predictions’

...

predictions written

EBV’s written in together.cage.predict_EBVs

--prediction finished, end of program!--

whereas with the MCMC option there are prints to the screen every thin
iterations, with current samples for variance components , and the first three
effects. It is interesting to check it because very high or low variances usually
mean convergence problems. An example of typical output is:

10 ef 1 to 3 18.1218315671272 22.4329129824538

4.11723314223575 vara,vard,varg,varp,vare,pa(1),pd(1),includeda

9.322796136633381E-005 2.495193547212199E-006 5.94763640217896
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5.9.1 Solution file

The solution file name has been written in the parameter file. It looks as
follows:

effect level solution sderror p tau2 sdtau2

2 1 -0.41E-02 0.24282092E-01 1.0 0.64E-03 0.66E-03

2 2 0.40E-02 0.26491797E-01 1.0 0.71E-03 0.75E-03

...

where the effect, level and solution are self-explanatory; as for the sderror,
it contains the standard error as computed by VCE or MCMCBLUP options;
p is the posterior probability that the SNP is retained in the BayesC model;
tau2 are the individual variances τ 2 for each SNP, as computed from Bayesian
Lasso.

5.9.2 Variance components samples

Variance components, π’s from BayesCPi and λ2 from Bayesian Lasso are
stored in the appropriate file, which looks as follows:

vara vard varg varp vare pa_1 pd_1 2varapqpi lambda2

0.28955E-03 0.175E-05 3.56 2.15 4.4927 1.0 1.0 1.0951 6907.3

0.30484E-03 0.175E-05 3.56 2.15 4.2219 1.0 1.0 1.1529 6560.8

where we found the variance components and pa_1,pd_1 are the π propor-
tions of the mixture for non-null additive and dominant marker locus effects,
respectively. Also, 2varapqpi is actually

2V ar(a)π
∑

piqi

that is, an estimator of the total genetic variance in the population
[3]. This estimator is correctly computed for all cases (GBLUP with VCE,
BayesCPi, Bayesian Lasso). Actually, in the Bayesian Lasso, V ar(a) = 2/λ2.
You should run Post-Gibbs analysis to verify convergence using this file.

5.9.3 EBV file

A file with EBV’s is always generated, with name parameter file_EBVs.
This file contains the sum of marker locus effects for each record (identified
by its id) in the data set, as well as the polygenic breeding value for that
animal.

id EBV_aSNP EBV_dSNP EBV_anim EBV_overall

345 -0.593444 0.195513E-01 1.58850 1.01461

346 1.02768 0.133699E-01 1.54519 2.58624

347 -0.463641 0.110049E-01 -1.37548 -1.82812

348 0.709268 0.167737E-01 -1.02831 -0.302271

349 0.536807 0.111886E-01 -0.214559 0.333436

350 0.343763 0.104102E-01 -3.43426 -3.08008
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5.9.4 Prediction file

When the PREDICT option is requested, a file predictions with predictions
is written; this file looks as follows:

id true prediction

345 0.000000000000000E+000 20.1683639909704

346 0.000000000000000E+000 26.5835060932076

347 0.000000000000000E+000 19.6251279892269

348 0.000000000000000E+000 22.1100022521052

349 0.000000000000000E+000 17.1784939889099

350 0.000000000000000E+000 18.2351226649716

351 0.000000000000000E+000 25.4024678477097
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