root / UCalcSimulP.pas
Historique | Voir | Annoter | Télécharger (26,807 ko)
1 |
unit UCalcSimulP;
|
---|---|
2 |
|
3 |
interface
|
4 |
|
5 |
uses
|
6 |
UVariables; |
7 |
|
8 |
// Simul = N? de la simulation (-1 pour profil)
|
9 |
// Profil, SeqAli, Ration = N? d'enregistrement pour comparaison
|
10 |
// Variable = N? de la variable ? moduler
|
11 |
// Variation = Coefficient de variation
|
12 |
// Restrict = Coefficient de restriction
|
13 |
// PResSimulP = Tableau de r?sultats
|
14 |
procedure CalcSimulP(Simul, Profil, SeqAli, Ration, Variable: integer;
|
15 |
Variation: double; PResSimulP: PTabResSimulP; AALimit: Boolean = True); |
16 |
|
17 |
implementation
|
18 |
|
19 |
uses
|
20 |
Math, UFindRec, UCalcul; |
21 |
|
22 |
procedure CalcSimulP(Simul, Profil, SeqAli, Ration, Variable: integer;
|
23 |
Variation: double; PResSimulP: PTabResSimulP; AALimit: Boolean = True); |
24 |
const
|
25 |
Standing = 4;
|
26 |
PVmr1 = 19.999; |
27 |
mrPV1 = 8.4 * GEProtJaap;
|
28 |
mrPV2 = 0;
|
29 |
var
|
30 |
i, j: integer; |
31 |
FinSimul, ErrSimul, ok: boolean; |
32 |
NumRuleSeqAli, NumRuleRation, RuleSeqAliInit, RuleRationInit, Unite: integer; |
33 |
Age, Ecart, AgeInit, AgeFin, ModeFinSim, Duree: integer; |
34 |
PDMoy, BGompertz, Entretien, PVmr2, ProtInit, ProtFin, PVFin: double; |
35 |
PV, p, PD, EnergyPD, l, LD, EnergyLD, PVVafter, PVafter, GMQ, PVV: double; |
36 |
PctAli1, PctAli2, Cumul, Init, QuantiteAL, Quantite: double; |
37 |
IngereAL, Ingere, IngereSec, IngSec1, IngSec2, Gaspillage: double; |
38 |
DEcrois, MEcrois, NEcrois: double; |
39 |
PDFirstLimit, FHP60, NEmAL, NEm, NEintakeAL: double; |
40 |
PDAL, px1AL, py1AL, mr, F, a, b, PDmaxE, NEintake, px1, py1, PfreeNE: double; |
41 |
ExcessProt, ObligUrinELoss, UrinEnergy, MEexcessProt, NEexcessProt: double; |
42 |
PDfreeNEintake, NEintakeSim, MEintake, PDfreeNEPD, PDfreeNEreq: double; |
43 |
TabAAdig, TabAAm, TabAAfG, TabPDAA: array[0..12] of double; |
44 |
TabDEIntake, TabProtFreeNE, TabProtFreeME: array[1..6] of double; |
45 |
RecCC1, RecCC2: CompositionChimique; |
46 |
TabAAtotal1, TabAAtotal2, TabCUDAA1, TabCUDAA2: array[0..12] of double; |
47 |
Gompertz, Pmat: Extended; |
48 |
begin
|
49 |
FinSimul := False; |
50 |
ErrSimul := False; |
51 |
// Initialisation du tableau de r?sultat
|
52 |
for i := 1 to NB_COL_PORC do |
53 |
for j := 1 to MAX_LIG_PORC do |
54 |
PResSimulP.TabResult[i, j] := 0;
|
55 |
// Initialisation de la simulation
|
56 |
PResSimulP.NbJSim := 0;
|
57 |
NumRuleSeqAli := 1;
|
58 |
RuleSeqAliInit := 1;
|
59 |
NumRuleRation := 1;
|
60 |
RuleRationInit := 1;
|
61 |
if Simul = -1 then // Profil |
62 |
begin
|
63 |
// Initialisation du profil animal
|
64 |
PProfilP := ListProfilP[FindIdxProfilP(FindNomProfilP(Profil))]; |
65 |
// Initialisation de la s?quence alimentaire
|
66 |
// PSeqAliP := ListSeqAliP[FindIdxSeqAliP(FindNomSeqAliP(PProfilP.SeqAli))];
|
67 |
PSeqAliP := ListSeqAliP[FindIdxSeqAliP(FindNomSeqAliP(SeqAli))]; |
68 |
// Initialisation du plan de rationnement
|
69 |
// if PProfilP.Ration <> -1
|
70 |
// then
|
71 |
// PRationP := ListRationP[FindIdxRationP(FindNomRationP(PProfilP.Ration))];
|
72 |
if Ration <> -1 then // plan de rationnement de la simulation |
73 |
PRationP := ListRationP[FindIdxRationP(FindNomRationP(Ration))]; |
74 |
// D?but et fin de simulation
|
75 |
Age := PProfilP.AgeInit; |
76 |
PV := PProfilP.PVInit; |
77 |
p := PProfilP.ProtInit; |
78 |
l := PProfilP.LipInit; |
79 |
ModeFinSim := PProfilP.ModeFin; |
80 |
Duree := PProfilP.Duree; |
81 |
PVFin := PProfilP.PVFin; |
82 |
end
|
83 |
else // Simulation |
84 |
begin
|
85 |
// Initialisation des param?tres de simulation
|
86 |
PSimulP := ListSimulP[FindIdxSimulP(FindNomSimulP(Simul))]; |
87 |
// Initialisation du profil animal
|
88 |
if Profil = -1 then // Profil de la simulation |
89 |
PProfilP := ListProfilP[FindIdxProfilP(FindNomProfilP(PSimulP.Profil))] |
90 |
else
|
91 |
PProfilP := ListProfilP[FindIdxProfilP(FindNomProfilP(Profil))]; |
92 |
// Initialisation de la s?quence alimentaire
|
93 |
if SeqAli = -1 then // S?quence alimentaire de la simulation |
94 |
PSeqAliP := ListSeqAliP[FindIdxSeqAliP(FindNomSeqAliP(PSimulP.SeqAli))] |
95 |
else
|
96 |
PSeqAliP := ListSeqAliP[FindIdxSeqAliP(FindNomSeqAliP(SeqAli))]; |
97 |
// Initialisation du plan de rationnement
|
98 |
if Ration = -1 then // plan de rationnement de la simulation |
99 |
PRationP := ListRationP[FindIdxRationP(FindNomRationP(PSimulP.Ration))] |
100 |
else
|
101 |
PRationP := ListRationP[FindIdxRationP(FindNomRationP(Ration))]; |
102 |
// D?but et fin de simulation
|
103 |
if PSimulP.AgeInitProfil then // Profil |
104 |
Age := PProfilP.AgeInit |
105 |
else // Simulation |
106 |
Age := PSimulP.AgeInit; |
107 |
if PSimulP.PVInitProfil then // Profil |
108 |
PV := PProfilP.PVInit |
109 |
else // Simulation |
110 |
PV := PSimulP.PVInit; |
111 |
if PSimulP.ProtLipInitProfil then // Profil |
112 |
if PSimulP.PVInitProfil then // Valeurs stock?es |
113 |
begin
|
114 |
p := PProfilP.ProtInit; |
115 |
l := PProfilP.LipInit; |
116 |
end
|
117 |
else // Valeurs calcul?es |
118 |
begin
|
119 |
p := CalcProt(PV); |
120 |
l := CalcLipProt(PV, p); |
121 |
end
|
122 |
else // Simulation |
123 |
begin
|
124 |
p := PSimulP.ProtInit; |
125 |
l := PSimulP.LipInit; |
126 |
end;
|
127 |
if PSimulP.FinProfil then // Profil |
128 |
begin
|
129 |
ModeFinSim := PProfilP.ModeFin; |
130 |
Duree := PProfilP.Duree; |
131 |
PVFin := PProfilP.PVFin; |
132 |
end
|
133 |
else // Simulation |
134 |
begin
|
135 |
ModeFinSim := PSimulP.ModeFin; |
136 |
Duree := PSimulP.Duree; |
137 |
PVFin := PSimulP.PVFin; |
138 |
end;
|
139 |
end;
|
140 |
AgeInit := Age; |
141 |
ProtInit := p; |
142 |
PDMoy := PProfilP.PDMoy; |
143 |
BGompertz := PProfilP.BGompertz; |
144 |
Entretien := PProfilP.Entretien; |
145 |
PVmr2 := PProfilP.PVmr2; |
146 |
// Sensibilit? (animal)
|
147 |
case Variable of |
148 |
0: // PD moyen |
149 |
PDMoy := PDMoy * Variation; |
150 |
1: // Pr?cocit? |
151 |
BGompertz := BGompertz * Variation; |
152 |
2: // Entretien |
153 |
Entretien := Entretien * Variation; |
154 |
3: // PV PDMax |
155 |
PVmr2 := PVmr2 * Variation; |
156 |
4: // Etat final |
157 |
begin
|
158 |
Duree := Round(Duree * Variation); |
159 |
PVFin := PVFin * Variation; |
160 |
end;
|
161 |
end;
|
162 |
// Poids de prot?ines ? la maturit?
|
163 |
if PProfilP.ModeFin = 0 then // Dur?e |
164 |
begin
|
165 |
AgeFin := PProfilP.AgeInit + PProfilP.Duree; |
166 |
ProtFin := PProfilP.Duree * (PDMoy / 1000) + PProfilP.ProtInit;
|
167 |
end
|
168 |
else // Poids |
169 |
begin
|
170 |
AgeFin := Round((CalcProt(PProfilP.PVFin) - PProfilP.ProtInit) / (PDMoy / 1000)) + PProfilP.AgeInit;
|
171 |
ProtFin := (AgeFin - PProfilP.AgeInit) * (PDMoy / 1000) + PProfilP.ProtInit;
|
172 |
end;
|
173 |
Gompertz := Exp(-BGompertz * (AgeFin - PProfilP.AgeInit)); |
174 |
Pmat := ProtFin * Power(ProtFin / PProfilP.ProtInit, Gompertz / (1 - Gompertz));
|
175 |
repeat
|
176 |
Inc(PResSimulP.NbJSim); |
177 |
PVV := CalcPVV(PV); |
178 |
PResSimulP.TabResult[1, PResSimulP.NbJSim] := Age;
|
179 |
PResSimulP.TabResult[2, PResSimulP.NbJSim] := PV;
|
180 |
PResSimulP.TabResult[48, PResSimulP.NbJSim] := PVV;
|
181 |
PResSimulP.TabResult[49, PResSimulP.NbJSim] := p;
|
182 |
PResSimulP.TabResult[50, PResSimulP.NbJSim] := l;
|
183 |
PResSimulP.TabResult[70, PResSimulP.NbJSim] := Standing * Entretien;
|
184 |
|
185 |
PResSimulP.TabResult[85, PResSimulP.NbJSim] := Pmat;
|
186 |
PResSimulP.TabResult[107, PResSimulP.NbJSim] := AgeFin;
|
187 |
PResSimulP.TabResult[108, PResSimulP.NbJSim] := ProtFin;
|
188 |
// Muscle
|
189 |
// PResSimulP.TabResult[107, PResSimulP.NbJSim] := CalcMuscle(PVV, l);
|
190 |
// TVM
|
191 |
// PResSimulP.TabResult[108, PResSimulP.NbJSim] := CalcTVM(PVV, l);
|
192 |
/////////////////////////
|
193 |
// Apports journaliers //
|
194 |
/////////////////////////
|
195 |
// Aliment(s) distribu?(s)
|
196 |
repeat
|
197 |
ok := True; |
198 |
with PSeqAliP.Rule[NumRuleSeqAli] do |
199 |
case ModeFin of |
200 |
0: // Dur?e |
201 |
if PResSimulP.NbJSim - RuleSeqAliInit >= ValFin then |
202 |
ok := False; |
203 |
1: // Age |
204 |
if Age > ValFin then |
205 |
ok := False; |
206 |
2: // Poids vif |
207 |
if PV >= ValFin then |
208 |
ok := False; |
209 |
3: // Cumul aliment |
210 |
begin
|
211 |
Cumul := 0;
|
212 |
for i := RuleSeqAliInit to PResSimulP.NbJSim do |
213 |
Cumul := Cumul + PResSimulP.TabResult[113, i];
|
214 |
if Cumul >= ValFin then |
215 |
ok := False; |
216 |
end;
|
217 |
end;
|
218 |
if not ok then // Changement de r?gle |
219 |
begin
|
220 |
Inc(NumRuleSeqAli); |
221 |
RuleSeqAliInit := PResSimulP.NbJSim; |
222 |
end;
|
223 |
until ok;
|
224 |
with PSeqAliP.Rule[NumRuleSeqAli] do |
225 |
begin
|
226 |
PResSimulP.TabResult[3, PResSimulP.NbJSim] := NumRuleSeqAli;
|
227 |
PResSimulP.TabResult[4, PResSimulP.NbJSim] := ModeFin;
|
228 |
PResSimulP.TabResult[7, PResSimulP.NbJSim] := NumAli1;
|
229 |
PResSimulP.TabResult[8, PResSimulP.NbJSim] := NumAli2;
|
230 |
// Composition aliment 1
|
231 |
if NumAli1 = -1 then |
232 |
begin
|
233 |
RecCC1 := CCVide; |
234 |
for i := 0 to 12 do |
235 |
TabAAtotal1[i] := 0;
|
236 |
for i := 0 to 12 do |
237 |
TabCUDAA1[i] := 0;
|
238 |
end
|
239 |
else
|
240 |
begin
|
241 |
PAliment := ListAliment[FindIdxAliment(FindNomAliment(NumAli1))]; |
242 |
RecCC1 := PAliment.CC; |
243 |
for i := 0 to 12 do |
244 |
TabAAtotal1[i] := PAliment.AAtotal[i]; |
245 |
for i := 0 to 12 do |
246 |
TabCUDAA1[i] := PAliment.CUDAA[i]; |
247 |
end;
|
248 |
// Composition aliment 2
|
249 |
if NumAli2 = -1 then |
250 |
begin
|
251 |
RecCC2 := CCVide; |
252 |
for i := 0 to 12 do |
253 |
TabAAtotal2[i] := 0;
|
254 |
for i := 0 to 12 do |
255 |
TabCUDAA2[i] := 0;
|
256 |
end
|
257 |
else
|
258 |
begin
|
259 |
PAliment := ListAliment[FindIdxAliment(FindNomAliment(NumAli2))]; |
260 |
RecCC2 := PAliment.CC; |
261 |
for i := 0 to 12 do |
262 |
TabAAtotal2[i] := PAliment.AAtotal[i]; |
263 |
for i := 0 to 12 do |
264 |
TabCUDAA2[i] := PAliment.CUDAA[i]; |
265 |
end;
|
266 |
// Calcul des % aliments
|
267 |
if PctAli1Init = PctAli1Fin then |
268 |
PctAli1 := PctAli1Init |
269 |
else // Transition |
270 |
begin
|
271 |
Ecart := PctAli1Fin - PctAli1Init; |
272 |
case ModeFin of |
273 |
-1: // Fin de simulation |
274 |
case ModeFinSim of |
275 |
0: // Dur?e |
276 |
PctAli1 := PctAli1Init + (PResSimulP.NbJSim - RuleSeqAliInit) * Ecart / (Duree - 1);
|
277 |
1: // Poids vif |
278 |
begin
|
279 |
Init := PResSimulP.TabResult[2, RuleSeqAliInit];
|
280 |
PctAli1 := PctAli1Init + (PV - Init) * Ecart / (PVFin - Init); |
281 |
end;
|
282 |
else
|
283 |
PctAli1 := PctAli1Init; |
284 |
end;
|
285 |
0: // Dur?e |
286 |
PctAli1 := PctAli1Init + (PResSimulP.NbJSim - RuleSeqAliInit) * Ecart / (ValFin - 1);
|
287 |
1: // Age |
288 |
begin
|
289 |
Init := PResSimulP.TabResult[1, RuleSeqAliInit];
|
290 |
PctAli1 := PctAli1Init + (Age - Init) * Ecart / (ValFin - Init); |
291 |
end;
|
292 |
2: // Poids vif |
293 |
begin
|
294 |
Init := PResSimulP.TabResult[2, RuleSeqAliInit];
|
295 |
PctAli1 := PctAli1Init + (PV - Init) * Ecart / (ValFin - Init); |
296 |
end;
|
297 |
else
|
298 |
PctAli1 := PctAli1Init; |
299 |
end;
|
300 |
if (PctAli1 > 100) then |
301 |
PctAli1 := 100;
|
302 |
if (PctAli1 < 0) then |
303 |
PctAli1 := 0;
|
304 |
end;
|
305 |
end;
|
306 |
PResSimulP.TabResult[9, PResSimulP.NbJSim] := PctAli1;
|
307 |
PctAli2 := 100 - PctAli1;
|
308 |
PResSimulP.TabResult[10, PResSimulP.NbJSim] := PctAli2;
|
309 |
// Ing?r? AdLib
|
310 |
with PProfilP^ do |
311 |
begin
|
312 |
// Calcul des quantit?s
|
313 |
{
|
314 |
case Equation of
|
315 |
0 : // a+b*PV
|
316 |
QuantiteAL := a + b * PV ;
|
317 |
1 : // a*PV^b
|
318 |
QuantiteAL := a * Power (PV, b) ;
|
319 |
2 : // a*(1-exp(-b*PV))
|
320 |
QuantiteAL := a * (1 - Exp (-b * PV)) ;
|
321 |
else
|
322 |
QuantiteAL := 0 ;
|
323 |
end ;
|
324 |
}
|
325 |
QuantiteAL := CalcIngere(Equation, Unite, a, b, PV); |
326 |
// Convertion de ED, EM, EN en quantit? si besoin
|
327 |
case Unite of |
328 |
1: // ED (MJ/j) |
329 |
IngereAL := QuantiteAL / (PctAli1 / 100 *
|
330 |
RecCC1.ED_C * RecCC1.MS / 1000 + PctAli2 / 100 * |
331 |
RecCC2.ED_C * RecCC2.MS / 1000);
|
332 |
2: // EM (MJ/j) |
333 |
IngereAL := QuantiteAL / (PctAli1 / 100 *
|
334 |
RecCC1.EM_C * RecCC1.MS / 1000 + PctAli2 / 100 * |
335 |
RecCC2.EM_C * RecCC2.MS / 1000);
|
336 |
3: // EN (MJ/j) |
337 |
IngereAL := QuantiteAL / (PctAli1 / 100 *
|
338 |
RecCC1.EN_C * RecCC1.MS / 1000 + PctAli2 / 100 * |
339 |
RecCC2.EN_C * RecCC2.MS / 1000);
|
340 |
4: // MS (kg/j) |
341 |
IngereAL := QuantiteAL / (PctAli1 / 100 *
|
342 |
RecCC1.MS / 1000 + PctAli2 / 100 * RecCC2.MS / 1000); |
343 |
else // Quantit? (kg/j) |
344 |
IngereAL := QuantiteAL; |
345 |
end;
|
346 |
end;
|
347 |
PResSimulP.TabResult[78, PResSimulP.NbJSim] := IngereAL;
|
348 |
// Quantit?(s) distribu?e(s)
|
349 |
if (Simul = -1) and (Ration = -1) then // Consommation AdLib |
350 |
Ingere := IngereAL |
351 |
else // Plan de rationnement |
352 |
begin
|
353 |
repeat
|
354 |
ok := True; |
355 |
with PRationP.Rule[NumRuleRation] do |
356 |
case ModeFin of |
357 |
0: // Dur?e |
358 |
if PResSimulP.NbJSim - RuleRationInit >= ValFin then |
359 |
ok := False; |
360 |
1: // Age |
361 |
if Age > ValFin then |
362 |
ok := False; |
363 |
2: // Poids vif |
364 |
if PV >= ValFin then |
365 |
ok := False; |
366 |
3: // Cumul aliment |
367 |
begin
|
368 |
Cumul := 0;
|
369 |
for i := RuleRationInit to PResSimulP.NbJSim do |
370 |
Cumul := Cumul + PResSimulP.TabResult[113, i];
|
371 |
if Cumul >= ValFin then |
372 |
ok := False; |
373 |
end;
|
374 |
4..8: // Consommation |
375 |
if PResSimulP.NbJSim > 1 then |
376 |
begin
|
377 |
i := PResSimulP.NbJSim - 1;
|
378 |
case ModeFin of |
379 |
4: // Consommation (aliment) |
380 |
if PResSimulP.TabResult[113, i] >= ValFin then |
381 |
ok := False; |
382 |
5: // Consommation (MS) |
383 |
if PResSimulP.TabResult[106, i] * PResSimulP.TabResult[113, i] >= |
384 |
ValFin then
|
385 |
ok := False; |
386 |
6: // Consommation (ED) |
387 |
if PResSimulP.TabResult[109, i] * PResSimulP.TabResult[113, i] >= |
388 |
ValFin then
|
389 |
ok := False; |
390 |
7: // Consommation (EM) |
391 |
if PResSimulP.TabResult[89, i] * PResSimulP.TabResult[113, i] >= |
392 |
ValFin then
|
393 |
ok := False; |
394 |
8: // Consommation (EN) |
395 |
if PResSimulP.TabResult[90, i] * PResSimulP.TabResult[113, i] >= |
396 |
ValFin then
|
397 |
ok := False; |
398 |
end;
|
399 |
end;
|
400 |
end;
|
401 |
if not ok then // Changement de r?gle |
402 |
begin
|
403 |
Inc(NumRuleRation); |
404 |
RuleRationInit := PResSimulP.NbJSim; |
405 |
end;
|
406 |
until ok;
|
407 |
with PRationP.Rule[NumRuleRation] do |
408 |
begin
|
409 |
PResSimulP.TabResult[5, PResSimulP.NbJSim] := NumRuleRation;
|
410 |
PResSimulP.TabResult[6, PResSimulP.NbJSim] := ModeFin;
|
411 |
// Calcul des quantit?s
|
412 |
case RuleType of |
413 |
0: // % Ad libitum |
414 |
Quantite := QuantiteAL * Percent; |
415 |
1: // Constant |
416 |
Quantite := Quantity; |
417 |
2: // f(dur?e) |
418 |
case EqDuree of |
419 |
0: // a+b*jour |
420 |
begin
|
421 |
Init := PResSimulP.TabResult[1, RuleRationInit];
|
422 |
Quantite := aDuree + bDuree * (Age - Init); |
423 |
end;
|
424 |
1: // a+b*semaine |
425 |
begin
|
426 |
Init := PResSimulP.TabResult[1, RuleRationInit];
|
427 |
Quantite := aDuree + bDuree * Trunc((Age - Init) / 7);
|
428 |
end;
|
429 |
else
|
430 |
Quantite := 0;
|
431 |
end;
|
432 |
3: // f(poids vif) |
433 |
{
|
434 |
case EqPV of
|
435 |
0: // a+b*PV
|
436 |
Quantite := aPV + bPV * PV;
|
437 |
1: // a*PV^b
|
438 |
Quantite := aPV * Power(PV, bPV);
|
439 |
2: // a*(1-exp(-b*PV))
|
440 |
Quantite := aPV * (1 - Exp(-bPV * PV));
|
441 |
else
|
442 |
Quantite := 0;
|
443 |
end;
|
444 |
}
|
445 |
Quantite := CalcIngere(EqPV, Unite, aPV, bPV, PV); |
446 |
else
|
447 |
Quantite := 0;
|
448 |
end;
|
449 |
end;
|
450 |
// Convertion de ED, EM, EN en quantit? si besoin
|
451 |
if PRationP.Rule[NumRuleRation].RuleType = 0 then |
452 |
// % AdLib : Unite est d?finie au niveau du profil
|
453 |
Unite := PProfilP.Unite |
454 |
else
|
455 |
Unite := PRationP.Rule[NumRuleRation].Unite; |
456 |
case Unite of |
457 |
1: // ED (MJ/j) |
458 |
Ingere := Quantite / (PctAli1 / 100 * RecCC1.ED_C *
|
459 |
RecCC1.MS / 1000 + PctAli2 / 100 * RecCC2.ED_C * RecCC2.MS / 1000); |
460 |
2: // EM (MJ/j) |
461 |
Ingere := Quantite / (PctAli1 / 100 * RecCC1.EM_C *
|
462 |
RecCC1.MS / 1000 + PctAli2 / 100 * RecCC2.EM_C * RecCC2.MS / 1000); |
463 |
3: // EN (MJ/j) |
464 |
Ingere := Quantite / (PctAli1 / 100 * RecCC1.EN_C *
|
465 |
RecCC1.MS / 1000 + PctAli2 / 100 * RecCC2.EN_C * RecCC2.MS / 1000); |
466 |
4: // MS (kg/j) |
467 |
Ingere := Quantite / (PctAli1 / 100 * RecCC1.MS /
|
468 |
1000 + PctAli2 / 100 * RecCC2.MS / 1000); |
469 |
else // Quantit? (kg/j) |
470 |
Ingere := Quantite; |
471 |
end;
|
472 |
end;
|
473 |
// Gaspillage
|
474 |
if (Simul = -1) and (Ration = -1) then // Ad libitum : pas de gaspillage |
475 |
Gaspillage := 0
|
476 |
else
|
477 |
Gaspillage := PRationP.Rule[NumRuleRation].Gaspillage; |
478 |
// Sensibilit? (aliment)
|
479 |
case Variable of |
480 |
5: // Quantit? d'aliment |
481 |
Ingere := Ingere * Variation; |
482 |
6: // Gaspillage |
483 |
Gaspillage := Max(Gaspillage + Variation, 0);
|
484 |
7..18: // Acides amin?s |
485 |
begin
|
486 |
TabAAtotal1[Variable - 6] := TabAAtotal1[Variable - 6] * Variation; |
487 |
TabAAtotal2[Variable - 6] := TabAAtotal2[Variable - 6] * Variation; |
488 |
if (Variable = 9) or (Variable = 13) then // met+cys ou phe+tyr |
489 |
begin
|
490 |
TabAAtotal1[Variable - 7] := TabAAtotal1[Variable - 7] * Variation; |
491 |
TabAAtotal2[Variable - 7] := TabAAtotal2[Variable - 7] * Variation; |
492 |
end;
|
493 |
end;
|
494 |
end;
|
495 |
PResSimulP.TabResult[11, PResSimulP.NbJSim] := Ingere;
|
496 |
PResSimulP.TabResult[112, PResSimulP.NbJSim] := Gaspillage;
|
497 |
PResSimulP.TabResult[113, PResSimulP.NbJSim] := Ingere / (1 - Gaspillage); |
498 |
// Calcul des apports journaliers
|
499 |
IngSec1 := Ingere * PctAli1 / 100 * RecCC1.MS / 1000; |
500 |
IngSec2 := Ingere * PctAli2 / 100 * RecCC2.MS / 1000; |
501 |
IngereSec := IngSec1 + IngSec2; |
502 |
if Ingere <> 0 then |
503 |
PResSimulP.TabResult[106, PResSimulP.NbJSim] := IngereSec / Ingere;
|
504 |
// Energie brute ing?r?e
|
505 |
PResSimulP.TabResult[12, PResSimulP.NbJSim] :=
|
506 |
IngSec1 * RecCC1.EB + IngSec2 * RecCC2.EB; |
507 |
// Composants digestibles ing?r?s
|
508 |
TabDEIntake[1] := IngSec1 * RecCC1.MAT * RecCC1.dMAT_C / 100 + |
509 |
IngSec2 * RecCC2.MAT * RecCC2.dMAT_C / 100;
|
510 |
TabDEIntake[2] := IngSec1 * RecCC1.Lip * RecCC1.dLip_C / 100 + |
511 |
IngSec2 * RecCC2.Lip * RecCC2.dLip_C / 100;
|
512 |
TabDEIntake[3] := IngSec1 * RecCC1.Amidon + IngSec2 * RecCC2.Amidon;
|
513 |
TabDEIntake[4] := IngSec1 * RecCC1.Sucres + IngSec2 * RecCC2.Sucres;
|
514 |
TabDEIntake[5] := IngSec1 * RecCC1.CB * RecCC1.dCB_C / 100 + |
515 |
IngSec2 * RecCC2.CB * RecCC2.dCB_C / 100;
|
516 |
TabDEIntake[6] := IngSec1 * RecCC1.Residu * RecCC1.dResidu_C /
|
517 |
100 + IngSec2 * RecCC2.Residu * RecCC2.dResidu_C / 100; |
518 |
for i := 1 to 6 do |
519 |
PResSimulP.TabResult[12 + i, PResSimulP.NbJSim] := TabDEIntake[i];
|
520 |
// Acides amin?s totaux ing?r?s
|
521 |
for i := 0 to 12 do |
522 |
PResSimulP.TabResult[93 + i, PResSimulP.NbJSim] :=
|
523 |
IngSec1 * TabAAtotal1[i] + IngSec2 * TabAAtotal2[i]; |
524 |
// Acides amin?s digestibles ing?r?s
|
525 |
for i := 0 to 12 do |
526 |
TabAAdig[i] := IngSec1 * TabAAtotal1[i] * TabCUDAA1[i] / 100 +
|
527 |
IngSec2 * TabAAtotal2[i] * TabCUDAA2[i] / 100;
|
528 |
for i := 0 to 12 do |
529 |
PResSimulP.TabResult[19 + i, PResSimulP.NbJSim] := TabAAdig[i];
|
530 |
////////////////
|
531 |
// Simulation //
|
532 |
////////////////
|
533 |
// Calcul de l'ED croissance
|
534 |
if Ingere = 0 then |
535 |
DEcrois := 0
|
536 |
else
|
537 |
DEcrois := (IngSec1 * RecCC1.ED_C + IngSec2 * RecCC2.ED_C) / Ingere; |
538 |
PResSimulP.TabResult[109, PResSimulP.NbJSim] := DEcrois;
|
539 |
// Calcul de l'EM croissance
|
540 |
if Ingere = 0 then |
541 |
MEcrois := 0
|
542 |
else
|
543 |
MEcrois := (IngSec1 * RecCC1.EM_C + IngSec2 * RecCC2.EM_C) / Ingere; |
544 |
PResSimulP.TabResult[89, PResSimulP.NbJSim] := MEcrois;
|
545 |
// Calcul de l'EN croissance
|
546 |
if Ingere = 0 then |
547 |
NEcrois := 0
|
548 |
else
|
549 |
NEcrois := (IngSec1 * RecCC1.EN_C + IngSec2 * RecCC2.EN_C) / Ingere; |
550 |
PResSimulP.TabResult[90, PResSimulP.NbJSim] := NEcrois;
|
551 |
// D?pot de prot?ines et d'acides amin?s
|
552 |
for i := 0 to 12 do |
553 |
begin
|
554 |
TabAAm[i] := AAm75[i] * Power(PV, 0.75) + IngereSec * AAendogene[i];
|
555 |
TabAAfG[i] := (TabAAdig[i] - TabAAm[i]) * kAA[i]; |
556 |
TabPDAA[i] := TabAAfG[i] / AAbody[i]; |
557 |
PResSimulP.TabResult[32 + i, PResSimulP.NbJSim] := TabPDAA[i];
|
558 |
end;
|
559 |
// met+cys
|
560 |
PResSimulP.TabResult[45, PResSimulP.NbJSim] :=
|
561 |
(TabAAfG[2] + TabAAfG[3]) / (AAbody[2] + AAbody[3]); |
562 |
// phe+tyr
|
563 |
PResSimulP.TabResult[46, PResSimulP.NbJSim] :=
|
564 |
(TabAAfG[6] + TabAAfG[7]) / (AAbody[6] + AAbody[7]); |
565 |
// Premier facteur limitant le d?pot de prot?ines
|
566 |
PDFirstLimit := PResSimulP.TabResult[32, PResSimulP.NbJSim];
|
567 |
for i := 33 to 46 do |
568 |
if (i <> 35) and (i <> 39) // Ignorer 'cys' et 'tyr' |
569 |
then
|
570 |
if PResSimulP.TabResult[i, PResSimulP.NbJSim] < PDFirstLimit then |
571 |
PDFirstLimit := PResSimulP.TabResult[i, PResSimulP.NbJSim]; |
572 |
PResSimulP.TabResult[47, PResSimulP.NbJSim] := PDFirstLimit;
|
573 |
// Besoins en ?nergie nette
|
574 |
// 1) NEmAL
|
575 |
FHP60 := FHPint + FHPpente * IngereAL * 1000 * NEcrois / Power(PV, 0.6); |
576 |
NEmAL := Entretien * (Standing * NEact60h + kBR * FHP60) * Power(PV, 0.6);
|
577 |
PResSimulP.TabResult[71, PResSimulP.NbJSim] := NEmAL;
|
578 |
// 2) NEm
|
579 |
FHP60 := FHPint + FHPpente * Ingere * 1000 * NEcrois / Power(PV, 0.6); |
580 |
PResSimulP.TabResult[91, PResSimulP.NbJSim] := FHP60;
|
581 |
NEm := Entretien * (Standing * NEact60h + kBR * FHP60) * Power(PV, 0.6);
|
582 |
PResSimulP.TabResult[72, PResSimulP.NbJSim] := NEm;
|
583 |
// R?partition de l'?nergie
|
584 |
NEintakeAL := 1000 * IngereAL * NEcrois;
|
585 |
PDAL := 1000 * BGompertz * p * Ln(Pmat / p);
|
586 |
px1AL := (NEintakeAL - NEmAL) / NEmAL + 1;
|
587 |
py1AL := PDAL * GEProtJaap; |
588 |
PResSimulP.TabResult[110, PResSimulP.NbJSim] := px1AL;
|
589 |
PResSimulP.TabResult[111, PResSimulP.NbJSim] := py1AL;
|
590 |
mr := (mrPV1 * PVmr2 - mrPV2 * PVmr1 - PV * mrPV1 + PV * mrPV2) / |
591 |
(-PVmr1 + PVmr2) * (NEmAL / 1000);
|
592 |
PResSimulP.TabResult[51, PResSimulP.NbJSim] := mr;
|
593 |
F := 1 / 2 * (mr * power(px1AL, 2) - 2 * px1AL * py1AL - mr) / |
594 |
(-py1AL + px1AL * mr - mr); |
595 |
if (F <= 1) or (py1AL / (px1AL - 1) <= mr) then // Minimum (courbure convexe) |
596 |
begin
|
597 |
F := INFINI; |
598 |
a := py1AL / (px1AL - 1);
|
599 |
b := 0;
|
600 |
end
|
601 |
else
|
602 |
if mr >= 0 then |
603 |
begin
|
604 |
a := -(px1AL * mr - mr - 2 * py1AL) / (px1AL - 1); |
605 |
b := (-py1AL + px1AL * mr - mr) / (power(px1AL, 2) - 2 * px1AL + 1); |
606 |
end
|
607 |
else
|
608 |
begin
|
609 |
a := 2 * py1AL / (F - 1); |
610 |
b := -py1AL / power((F - 1), 2); |
611 |
end;
|
612 |
PResSimulP.TabResult[52, PResSimulP.NbJSim] := F;
|
613 |
PResSimulP.TabResult[74, PResSimulP.NbJSim] := a;
|
614 |
PResSimulP.TabResult[75, PResSimulP.NbJSim] := b;
|
615 |
if px1AL < F then |
616 |
PDmaxE := a * (F - 1) + b * Power((F - 1), 2) |
617 |
else
|
618 |
PDmaxE := py1AL; |
619 |
PResSimulP.TabResult[69, PResSimulP.NbJSim] := PDmaxE;
|
620 |
NEintake := 1000 * Ingere * NEcrois;
|
621 |
px1 := (NEintake - NEm) / NEmAL + 1;
|
622 |
PResSimulP.TabResult[76, PResSimulP.NbJSim] := px1;
|
623 |
if px1 < F then |
624 |
py1 := a * (px1 - 1) + b * Power(px1 - 1, 2) |
625 |
else
|
626 |
py1 := PDmaxE; |
627 |
PResSimulP.TabResult[77, PResSimulP.NbJSim] := py1;
|
628 |
// D?p?t de prot?ines
|
629 |
if AALimit
|
630 |
then
|
631 |
PD := Min(py1 / GEProtJaap, PDFirstLimit) |
632 |
else
|
633 |
PD := py1 / GEProtJaap; |
634 |
PResSimulP.TabResult[79, PResSimulP.NbJSim] := PD;
|
635 |
EnergyPD := PD * GEProtJaap; |
636 |
PResSimulP.TabResult[66, PResSimulP.NbJSim] := EnergyPD;
|
637 |
// Apport en ?nergie
|
638 |
PfreeNE := 0;
|
639 |
for i := 1 to 6 do |
640 |
begin
|
641 |
TabProtFreeME[i] := TabDEIntake[i] * ValEnergie[i, 4] * ValEnergie[i, 2]; |
642 |
TabProtFreeNE[i] := TabProtFreeME[i] * ValEnergie[i, 5];
|
643 |
PfreeNE := PfreeNE + TabProtFreeNE[i]; |
644 |
PResSimulP.TabResult[i + 52, PResSimulP.NbJSim] := TabProtFreeNE[i];
|
645 |
end;
|
646 |
PResSimulP.TabResult[59, PResSimulP.NbJSim] := PfreeNE;
|
647 |
// Exc?s de prot?ines
|
648 |
ExcessProt := TabDEIntake[1] - PD;
|
649 |
PResSimulP.TabResult[60, PResSimulP.NbJSim] := ExcessProt;
|
650 |
ObligUrinELoss := 168 * Power(PV, 0.175); |
651 |
PResSimulP.TabResult[61, PResSimulP.NbJSim] := ObligUrinELoss;
|
652 |
UrinEnergy := ((ExcessProt / 6.25) * VarUrinELoss) + ObligUrinELoss;
|
653 |
PResSimulP.TabResult[62, PResSimulP.NbJSim] := UrinEnergy;
|
654 |
MEexcessProt := (ExcessProt * GEProtJaap) - UrinEnergy; |
655 |
PResSimulP.TabResult[63, PResSimulP.NbJSim] := MEexcessProt;
|
656 |
NEexcessProt := MEexcessProt * kProtJaap; |
657 |
PResSimulP.TabResult[64, PResSimulP.NbJSim] := NEexcessProt;
|
658 |
PDfreeNEintake := PfreeNE + NEexcessProt; |
659 |
PResSimulP.TabResult[65, PResSimulP.NbJSim] := PDfreeNEintake;
|
660 |
NEintakeSim := EnergyPD + PDfreeNEintake; |
661 |
PResSimulP.TabResult[67, PResSimulP.NbJSim] := NEintakeSim;
|
662 |
if Ingere <> 0 then |
663 |
PResSimulP.TabResult[88, PResSimulP.NbJSim] := NEintakeSim / (Ingere * 1000); |
664 |
MEintake := TabProtFreeME[1] + TabProtFreeME[2] + TabProtFreeME[3] + |
665 |
TabProtFreeME[4] + TabProtFreeME[5] + TabProtFreeME[6] + MEexcessProt + EnergyPD; |
666 |
PResSimulP.TabResult[86, PResSimulP.NbJSim] := MEintake;
|
667 |
if Ingere <> 0 then |
668 |
PResSimulP.TabResult[87, PResSimulP.NbJSim] := MEintake / (Ingere * 1000); |
669 |
// Besoin en ?nergie pour le d?pot de prot?ines
|
670 |
PDfreeNEPD := PD * GEProtJaap * NEPD; |
671 |
PResSimulP.TabResult[68, PResSimulP.NbJSim] := PDfreeNEPD;
|
672 |
PDfreeNEreq := PDfreeNEPD + NEm; |
673 |
PResSimulP.TabResult[73, PResSimulP.NbJSim] := PDfreeNEreq;
|
674 |
PResSimulP.TabResult[92, PResSimulP.NbJSim] := NEintakeSim - NEm;
|
675 |
// D?p?t de lipides
|
676 |
EnergyLD := PDfreeNEintake - PDfreeNEreq; |
677 |
LD := EnergyLD / ValEnergie[2, 2]; |
678 |
PResSimulP.TabResult[80, PResSimulP.NbJSim] := LD;
|
679 |
// Performances
|
680 |
p := p + PD / 1000;
|
681 |
PResSimulP.TabResult[81, PResSimulP.NbJSim] := p;
|
682 |
l := l + LD / 1000;
|
683 |
PResSimulP.TabResult[82, PResSimulP.NbJSim] := l;
|
684 |
if (p > 0) and (l > 0) then |
685 |
// Calcul du PVV ? partir des poids de prot?ines et lipides
|
686 |
PVVafter := ((Pallom * Power(p * 1000, Ballom)) +
|
687 |
(Lallom * Power(l * 1000, Ballom))) / 1000 |
688 |
else
|
689 |
begin
|
690 |
PVVafter := PVV; |
691 |
ErrSimul := True; |
692 |
end;
|
693 |
PVafter := CalcPV(PVVafter); |
694 |
PResSimulP.TabResult[83, PResSimulP.NbJSim] := PVafter;
|
695 |
GMQ := PVafter - PV; |
696 |
PResSimulP.TabResult[84, PResSimulP.NbJSim] := GMQ;
|
697 |
// if GMQ <> 0
|
698 |
// then
|
699 |
// PResSimulP.TabResult[85, PResSimulP.NbJSim] := Ingere / GMQ ;
|
700 |
// Test de fin de simulation
|
701 |
if ModeFinSim = 0 then // Dur?e |
702 |
FinSimul := PResSimulP.NbJSim >= Duree |
703 |
else // Poids vif |
704 |
FinSimul := PV >= PVFin; |
705 |
Inc(Age); |
706 |
PV := PVafter; |
707 |
until FinSimul or ErrSimul or (PResSimulP.NbJSim = MAX_LIG_PORC); |
708 |
end;
|
709 |
|
710 |
end.
|