root / UCalcSimulP.pas @ 3
Historique | Voir | Annoter | Télécharger (26,807 ko)
1 | 3 | avalancogn | unit UCalcSimulP;
|
---|---|---|---|
2 | |||
3 | interface
|
||
4 | |||
5 | uses
|
||
6 | UVariables; |
||
7 | |||
8 | // Simul = N? de la simulation (-1 pour profil)
|
||
9 | // Profil, SeqAli, Ration = N? d'enregistrement pour comparaison
|
||
10 | // Variable = N? de la variable ? moduler
|
||
11 | // Variation = Coefficient de variation
|
||
12 | // Restrict = Coefficient de restriction
|
||
13 | // PResSimulP = Tableau de r?sultats
|
||
14 | procedure CalcSimulP(Simul, Profil, SeqAli, Ration, Variable: integer;
|
||
15 | Variation: double; PResSimulP: PTabResSimulP; AALimit: Boolean = True); |
||
16 | |||
17 | implementation
|
||
18 | |||
19 | uses
|
||
20 | Math, UFindRec, UCalcul; |
||
21 | |||
22 | procedure CalcSimulP(Simul, Profil, SeqAli, Ration, Variable: integer;
|
||
23 | Variation: double; PResSimulP: PTabResSimulP; AALimit: Boolean = True); |
||
24 | const
|
||
25 | Standing = 4;
|
||
26 | PVmr1 = 19.999; |
||
27 | mrPV1 = 8.4 * GEProtJaap;
|
||
28 | mrPV2 = 0;
|
||
29 | var
|
||
30 | i, j: integer; |
||
31 | FinSimul, ErrSimul, ok: boolean; |
||
32 | NumRuleSeqAli, NumRuleRation, RuleSeqAliInit, RuleRationInit, Unite: integer; |
||
33 | Age, Ecart, AgeInit, AgeFin, ModeFinSim, Duree: integer; |
||
34 | PDMoy, BGompertz, Entretien, PVmr2, ProtInit, ProtFin, PVFin: double; |
||
35 | PV, p, PD, EnergyPD, l, LD, EnergyLD, PVVafter, PVafter, GMQ, PVV: double; |
||
36 | PctAli1, PctAli2, Cumul, Init, QuantiteAL, Quantite: double; |
||
37 | IngereAL, Ingere, IngereSec, IngSec1, IngSec2, Gaspillage: double; |
||
38 | DEcrois, MEcrois, NEcrois: double; |
||
39 | PDFirstLimit, FHP60, NEmAL, NEm, NEintakeAL: double; |
||
40 | PDAL, px1AL, py1AL, mr, F, a, b, PDmaxE, NEintake, px1, py1, PfreeNE: double; |
||
41 | ExcessProt, ObligUrinELoss, UrinEnergy, MEexcessProt, NEexcessProt: double; |
||
42 | PDfreeNEintake, NEintakeSim, MEintake, PDfreeNEPD, PDfreeNEreq: double; |
||
43 | TabAAdig, TabAAm, TabAAfG, TabPDAA: array[0..12] of double; |
||
44 | TabDEIntake, TabProtFreeNE, TabProtFreeME: array[1..6] of double; |
||
45 | RecCC1, RecCC2: CompositionChimique; |
||
46 | TabAAtotal1, TabAAtotal2, TabCUDAA1, TabCUDAA2: array[0..12] of double; |
||
47 | Gompertz, Pmat: Extended; |
||
48 | begin
|
||
49 | FinSimul := False; |
||
50 | ErrSimul := False; |
||
51 | // Initialisation du tableau de r?sultat
|
||
52 | for i := 1 to NB_COL_PORC do |
||
53 | for j := 1 to MAX_LIG_PORC do |
||
54 | PResSimulP.TabResult[i, j] := 0;
|
||
55 | // Initialisation de la simulation
|
||
56 | PResSimulP.NbJSim := 0;
|
||
57 | NumRuleSeqAli := 1;
|
||
58 | RuleSeqAliInit := 1;
|
||
59 | NumRuleRation := 1;
|
||
60 | RuleRationInit := 1;
|
||
61 | if Simul = -1 then // Profil |
||
62 | begin
|
||
63 | // Initialisation du profil animal
|
||
64 | PProfilP := ListProfilP[FindIdxProfilP(FindNomProfilP(Profil))]; |
||
65 | // Initialisation de la s?quence alimentaire
|
||
66 | // PSeqAliP := ListSeqAliP[FindIdxSeqAliP(FindNomSeqAliP(PProfilP.SeqAli))];
|
||
67 | PSeqAliP := ListSeqAliP[FindIdxSeqAliP(FindNomSeqAliP(SeqAli))]; |
||
68 | // Initialisation du plan de rationnement
|
||
69 | // if PProfilP.Ration <> -1
|
||
70 | // then
|
||
71 | // PRationP := ListRationP[FindIdxRationP(FindNomRationP(PProfilP.Ration))];
|
||
72 | if Ration <> -1 then // plan de rationnement de la simulation |
||
73 | PRationP := ListRationP[FindIdxRationP(FindNomRationP(Ration))]; |
||
74 | // D?but et fin de simulation
|
||
75 | Age := PProfilP.AgeInit; |
||
76 | PV := PProfilP.PVInit; |
||
77 | p := PProfilP.ProtInit; |
||
78 | l := PProfilP.LipInit; |
||
79 | ModeFinSim := PProfilP.ModeFin; |
||
80 | Duree := PProfilP.Duree; |
||
81 | PVFin := PProfilP.PVFin; |
||
82 | end
|
||
83 | else // Simulation |
||
84 | begin
|
||
85 | // Initialisation des param?tres de simulation
|
||
86 | PSimulP := ListSimulP[FindIdxSimulP(FindNomSimulP(Simul))]; |
||
87 | // Initialisation du profil animal
|
||
88 | if Profil = -1 then // Profil de la simulation |
||
89 | PProfilP := ListProfilP[FindIdxProfilP(FindNomProfilP(PSimulP.Profil))] |
||
90 | else
|
||
91 | PProfilP := ListProfilP[FindIdxProfilP(FindNomProfilP(Profil))]; |
||
92 | // Initialisation de la s?quence alimentaire
|
||
93 | if SeqAli = -1 then // S?quence alimentaire de la simulation |
||
94 | PSeqAliP := ListSeqAliP[FindIdxSeqAliP(FindNomSeqAliP(PSimulP.SeqAli))] |
||
95 | else
|
||
96 | PSeqAliP := ListSeqAliP[FindIdxSeqAliP(FindNomSeqAliP(SeqAli))]; |
||
97 | // Initialisation du plan de rationnement
|
||
98 | if Ration = -1 then // plan de rationnement de la simulation |
||
99 | PRationP := ListRationP[FindIdxRationP(FindNomRationP(PSimulP.Ration))] |
||
100 | else
|
||
101 | PRationP := ListRationP[FindIdxRationP(FindNomRationP(Ration))]; |
||
102 | // D?but et fin de simulation
|
||
103 | if PSimulP.AgeInitProfil then // Profil |
||
104 | Age := PProfilP.AgeInit |
||
105 | else // Simulation |
||
106 | Age := PSimulP.AgeInit; |
||
107 | if PSimulP.PVInitProfil then // Profil |
||
108 | PV := PProfilP.PVInit |
||
109 | else // Simulation |
||
110 | PV := PSimulP.PVInit; |
||
111 | if PSimulP.ProtLipInitProfil then // Profil |
||
112 | if PSimulP.PVInitProfil then // Valeurs stock?es |
||
113 | begin
|
||
114 | p := PProfilP.ProtInit; |
||
115 | l := PProfilP.LipInit; |
||
116 | end
|
||
117 | else // Valeurs calcul?es |
||
118 | begin
|
||
119 | p := CalcProt(PV); |
||
120 | l := CalcLipProt(PV, p); |
||
121 | end
|
||
122 | else // Simulation |
||
123 | begin
|
||
124 | p := PSimulP.ProtInit; |
||
125 | l := PSimulP.LipInit; |
||
126 | end;
|
||
127 | if PSimulP.FinProfil then // Profil |
||
128 | begin
|
||
129 | ModeFinSim := PProfilP.ModeFin; |
||
130 | Duree := PProfilP.Duree; |
||
131 | PVFin := PProfilP.PVFin; |
||
132 | end
|
||
133 | else // Simulation |
||
134 | begin
|
||
135 | ModeFinSim := PSimulP.ModeFin; |
||
136 | Duree := PSimulP.Duree; |
||
137 | PVFin := PSimulP.PVFin; |
||
138 | end;
|
||
139 | end;
|
||
140 | AgeInit := Age; |
||
141 | ProtInit := p; |
||
142 | PDMoy := PProfilP.PDMoy; |
||
143 | BGompertz := PProfilP.BGompertz; |
||
144 | Entretien := PProfilP.Entretien; |
||
145 | PVmr2 := PProfilP.PVmr2; |
||
146 | // Sensibilit? (animal)
|
||
147 | case Variable of |
||
148 | 0: // PD moyen |
||
149 | PDMoy := PDMoy * Variation; |
||
150 | 1: // Pr?cocit? |
||
151 | BGompertz := BGompertz * Variation; |
||
152 | 2: // Entretien |
||
153 | Entretien := Entretien * Variation; |
||
154 | 3: // PV PDMax |
||
155 | PVmr2 := PVmr2 * Variation; |
||
156 | 4: // Etat final |
||
157 | begin
|
||
158 | Duree := Round(Duree * Variation); |
||
159 | PVFin := PVFin * Variation; |
||
160 | end;
|
||
161 | end;
|
||
162 | // Poids de prot?ines ? la maturit?
|
||
163 | if PProfilP.ModeFin = 0 then // Dur?e |
||
164 | begin
|
||
165 | AgeFin := PProfilP.AgeInit + PProfilP.Duree; |
||
166 | ProtFin := PProfilP.Duree * (PDMoy / 1000) + PProfilP.ProtInit;
|
||
167 | end
|
||
168 | else // Poids |
||
169 | begin
|
||
170 | AgeFin := Round((CalcProt(PProfilP.PVFin) - PProfilP.ProtInit) / (PDMoy / 1000)) + PProfilP.AgeInit;
|
||
171 | ProtFin := (AgeFin - PProfilP.AgeInit) * (PDMoy / 1000) + PProfilP.ProtInit;
|
||
172 | end;
|
||
173 | Gompertz := Exp(-BGompertz * (AgeFin - PProfilP.AgeInit)); |
||
174 | Pmat := ProtFin * Power(ProtFin / PProfilP.ProtInit, Gompertz / (1 - Gompertz));
|
||
175 | repeat
|
||
176 | Inc(PResSimulP.NbJSim); |
||
177 | PVV := CalcPVV(PV); |
||
178 | PResSimulP.TabResult[1, PResSimulP.NbJSim] := Age;
|
||
179 | PResSimulP.TabResult[2, PResSimulP.NbJSim] := PV;
|
||
180 | PResSimulP.TabResult[48, PResSimulP.NbJSim] := PVV;
|
||
181 | PResSimulP.TabResult[49, PResSimulP.NbJSim] := p;
|
||
182 | PResSimulP.TabResult[50, PResSimulP.NbJSim] := l;
|
||
183 | PResSimulP.TabResult[70, PResSimulP.NbJSim] := Standing * Entretien;
|
||
184 | |||
185 | PResSimulP.TabResult[85, PResSimulP.NbJSim] := Pmat;
|
||
186 | PResSimulP.TabResult[107, PResSimulP.NbJSim] := AgeFin;
|
||
187 | PResSimulP.TabResult[108, PResSimulP.NbJSim] := ProtFin;
|
||
188 | // Muscle
|
||
189 | // PResSimulP.TabResult[107, PResSimulP.NbJSim] := CalcMuscle(PVV, l);
|
||
190 | // TVM
|
||
191 | // PResSimulP.TabResult[108, PResSimulP.NbJSim] := CalcTVM(PVV, l);
|
||
192 | /////////////////////////
|
||
193 | // Apports journaliers //
|
||
194 | /////////////////////////
|
||
195 | // Aliment(s) distribu?(s)
|
||
196 | repeat
|
||
197 | ok := True; |
||
198 | with PSeqAliP.Rule[NumRuleSeqAli] do |
||
199 | case ModeFin of |
||
200 | 0: // Dur?e |
||
201 | if PResSimulP.NbJSim - RuleSeqAliInit >= ValFin then |
||
202 | ok := False; |
||
203 | 1: // Age |
||
204 | if Age > ValFin then |
||
205 | ok := False; |
||
206 | 2: // Poids vif |
||
207 | if PV >= ValFin then |
||
208 | ok := False; |
||
209 | 3: // Cumul aliment |
||
210 | begin
|
||
211 | Cumul := 0;
|
||
212 | for i := RuleSeqAliInit to PResSimulP.NbJSim do |
||
213 | Cumul := Cumul + PResSimulP.TabResult[113, i];
|
||
214 | if Cumul >= ValFin then |
||
215 | ok := False; |
||
216 | end;
|
||
217 | end;
|
||
218 | if not ok then // Changement de r?gle |
||
219 | begin
|
||
220 | Inc(NumRuleSeqAli); |
||
221 | RuleSeqAliInit := PResSimulP.NbJSim; |
||
222 | end;
|
||
223 | until ok;
|
||
224 | with PSeqAliP.Rule[NumRuleSeqAli] do |
||
225 | begin
|
||
226 | PResSimulP.TabResult[3, PResSimulP.NbJSim] := NumRuleSeqAli;
|
||
227 | PResSimulP.TabResult[4, PResSimulP.NbJSim] := ModeFin;
|
||
228 | PResSimulP.TabResult[7, PResSimulP.NbJSim] := NumAli1;
|
||
229 | PResSimulP.TabResult[8, PResSimulP.NbJSim] := NumAli2;
|
||
230 | // Composition aliment 1
|
||
231 | if NumAli1 = -1 then |
||
232 | begin
|
||
233 | RecCC1 := CCVide; |
||
234 | for i := 0 to 12 do |
||
235 | TabAAtotal1[i] := 0;
|
||
236 | for i := 0 to 12 do |
||
237 | TabCUDAA1[i] := 0;
|
||
238 | end
|
||
239 | else
|
||
240 | begin
|
||
241 | PAliment := ListAliment[FindIdxAliment(FindNomAliment(NumAli1))]; |
||
242 | RecCC1 := PAliment.CC; |
||
243 | for i := 0 to 12 do |
||
244 | TabAAtotal1[i] := PAliment.AAtotal[i]; |
||
245 | for i := 0 to 12 do |
||
246 | TabCUDAA1[i] := PAliment.CUDAA[i]; |
||
247 | end;
|
||
248 | // Composition aliment 2
|
||
249 | if NumAli2 = -1 then |
||
250 | begin
|
||
251 | RecCC2 := CCVide; |
||
252 | for i := 0 to 12 do |
||
253 | TabAAtotal2[i] := 0;
|
||
254 | for i := 0 to 12 do |
||
255 | TabCUDAA2[i] := 0;
|
||
256 | end
|
||
257 | else
|
||
258 | begin
|
||
259 | PAliment := ListAliment[FindIdxAliment(FindNomAliment(NumAli2))]; |
||
260 | RecCC2 := PAliment.CC; |
||
261 | for i := 0 to 12 do |
||
262 | TabAAtotal2[i] := PAliment.AAtotal[i]; |
||
263 | for i := 0 to 12 do |
||
264 | TabCUDAA2[i] := PAliment.CUDAA[i]; |
||
265 | end;
|
||
266 | // Calcul des % aliments
|
||
267 | if PctAli1Init = PctAli1Fin then |
||
268 | PctAli1 := PctAli1Init |
||
269 | else // Transition |
||
270 | begin
|
||
271 | Ecart := PctAli1Fin - PctAli1Init; |
||
272 | case ModeFin of |
||
273 | -1: // Fin de simulation |
||
274 | case ModeFinSim of |
||
275 | 0: // Dur?e |
||
276 | PctAli1 := PctAli1Init + (PResSimulP.NbJSim - RuleSeqAliInit) * Ecart / (Duree - 1);
|
||
277 | 1: // Poids vif |
||
278 | begin
|
||
279 | Init := PResSimulP.TabResult[2, RuleSeqAliInit];
|
||
280 | PctAli1 := PctAli1Init + (PV - Init) * Ecart / (PVFin - Init); |
||
281 | end;
|
||
282 | else
|
||
283 | PctAli1 := PctAli1Init; |
||
284 | end;
|
||
285 | 0: // Dur?e |
||
286 | PctAli1 := PctAli1Init + (PResSimulP.NbJSim - RuleSeqAliInit) * Ecart / (ValFin - 1);
|
||
287 | 1: // Age |
||
288 | begin
|
||
289 | Init := PResSimulP.TabResult[1, RuleSeqAliInit];
|
||
290 | PctAli1 := PctAli1Init + (Age - Init) * Ecart / (ValFin - Init); |
||
291 | end;
|
||
292 | 2: // Poids vif |
||
293 | begin
|
||
294 | Init := PResSimulP.TabResult[2, RuleSeqAliInit];
|
||
295 | PctAli1 := PctAli1Init + (PV - Init) * Ecart / (ValFin - Init); |
||
296 | end;
|
||
297 | else
|
||
298 | PctAli1 := PctAli1Init; |
||
299 | end;
|
||
300 | if (PctAli1 > 100) then |
||
301 | PctAli1 := 100;
|
||
302 | if (PctAli1 < 0) then |
||
303 | PctAli1 := 0;
|
||
304 | end;
|
||
305 | end;
|
||
306 | PResSimulP.TabResult[9, PResSimulP.NbJSim] := PctAli1;
|
||
307 | PctAli2 := 100 - PctAli1;
|
||
308 | PResSimulP.TabResult[10, PResSimulP.NbJSim] := PctAli2;
|
||
309 | // Ing?r? AdLib
|
||
310 | with PProfilP^ do |
||
311 | begin
|
||
312 | // Calcul des quantit?s
|
||
313 | {
|
||
314 | case Equation of
|
||
315 | 0 : // a+b*PV
|
||
316 | QuantiteAL := a + b * PV ;
|
||
317 | 1 : // a*PV^b
|
||
318 | QuantiteAL := a * Power (PV, b) ;
|
||
319 | 2 : // a*(1-exp(-b*PV))
|
||
320 | QuantiteAL := a * (1 - Exp (-b * PV)) ;
|
||
321 | else
|
||
322 | QuantiteAL := 0 ;
|
||
323 | end ;
|
||
324 | }
|
||
325 | QuantiteAL := CalcIngere(Equation, Unite, a, b, PV); |
||
326 | // Convertion de ED, EM, EN en quantit? si besoin
|
||
327 | case Unite of |
||
328 | 1: // ED (MJ/j) |
||
329 | IngereAL := QuantiteAL / (PctAli1 / 100 *
|
||
330 | RecCC1.ED_C * RecCC1.MS / 1000 + PctAli2 / 100 * |
||
331 | RecCC2.ED_C * RecCC2.MS / 1000);
|
||
332 | 2: // EM (MJ/j) |
||
333 | IngereAL := QuantiteAL / (PctAli1 / 100 *
|
||
334 | RecCC1.EM_C * RecCC1.MS / 1000 + PctAli2 / 100 * |
||
335 | RecCC2.EM_C * RecCC2.MS / 1000);
|
||
336 | 3: // EN (MJ/j) |
||
337 | IngereAL := QuantiteAL / (PctAli1 / 100 *
|
||
338 | RecCC1.EN_C * RecCC1.MS / 1000 + PctAli2 / 100 * |
||
339 | RecCC2.EN_C * RecCC2.MS / 1000);
|
||
340 | 4: // MS (kg/j) |
||
341 | IngereAL := QuantiteAL / (PctAli1 / 100 *
|
||
342 | RecCC1.MS / 1000 + PctAli2 / 100 * RecCC2.MS / 1000); |
||
343 | else // Quantit? (kg/j) |
||
344 | IngereAL := QuantiteAL; |
||
345 | end;
|
||
346 | end;
|
||
347 | PResSimulP.TabResult[78, PResSimulP.NbJSim] := IngereAL;
|
||
348 | // Quantit?(s) distribu?e(s)
|
||
349 | if (Simul = -1) and (Ration = -1) then // Consommation AdLib |
||
350 | Ingere := IngereAL |
||
351 | else // Plan de rationnement |
||
352 | begin
|
||
353 | repeat
|
||
354 | ok := True; |
||
355 | with PRationP.Rule[NumRuleRation] do |
||
356 | case ModeFin of |
||
357 | 0: // Dur?e |
||
358 | if PResSimulP.NbJSim - RuleRationInit >= ValFin then |
||
359 | ok := False; |
||
360 | 1: // Age |
||
361 | if Age > ValFin then |
||
362 | ok := False; |
||
363 | 2: // Poids vif |
||
364 | if PV >= ValFin then |
||
365 | ok := False; |
||
366 | 3: // Cumul aliment |
||
367 | begin
|
||
368 | Cumul := 0;
|
||
369 | for i := RuleRationInit to PResSimulP.NbJSim do |
||
370 | Cumul := Cumul + PResSimulP.TabResult[113, i];
|
||
371 | if Cumul >= ValFin then |
||
372 | ok := False; |
||
373 | end;
|
||
374 | 4..8: // Consommation |
||
375 | if PResSimulP.NbJSim > 1 then |
||
376 | begin
|
||
377 | i := PResSimulP.NbJSim - 1;
|
||
378 | case ModeFin of |
||
379 | 4: // Consommation (aliment) |
||
380 | if PResSimulP.TabResult[113, i] >= ValFin then |
||
381 | ok := False; |
||
382 | 5: // Consommation (MS) |
||
383 | if PResSimulP.TabResult[106, i] * PResSimulP.TabResult[113, i] >= |
||
384 | ValFin then
|
||
385 | ok := False; |
||
386 | 6: // Consommation (ED) |
||
387 | if PResSimulP.TabResult[109, i] * PResSimulP.TabResult[113, i] >= |
||
388 | ValFin then
|
||
389 | ok := False; |
||
390 | 7: // Consommation (EM) |
||
391 | if PResSimulP.TabResult[89, i] * PResSimulP.TabResult[113, i] >= |
||
392 | ValFin then
|
||
393 | ok := False; |
||
394 | 8: // Consommation (EN) |
||
395 | if PResSimulP.TabResult[90, i] * PResSimulP.TabResult[113, i] >= |
||
396 | ValFin then
|
||
397 | ok := False; |
||
398 | end;
|
||
399 | end;
|
||
400 | end;
|
||
401 | if not ok then // Changement de r?gle |
||
402 | begin
|
||
403 | Inc(NumRuleRation); |
||
404 | RuleRationInit := PResSimulP.NbJSim; |
||
405 | end;
|
||
406 | until ok;
|
||
407 | with PRationP.Rule[NumRuleRation] do |
||
408 | begin
|
||
409 | PResSimulP.TabResult[5, PResSimulP.NbJSim] := NumRuleRation;
|
||
410 | PResSimulP.TabResult[6, PResSimulP.NbJSim] := ModeFin;
|
||
411 | // Calcul des quantit?s
|
||
412 | case RuleType of |
||
413 | 0: // % Ad libitum |
||
414 | Quantite := QuantiteAL * Percent; |
||
415 | 1: // Constant |
||
416 | Quantite := Quantity; |
||
417 | 2: // f(dur?e) |
||
418 | case EqDuree of |
||
419 | 0: // a+b*jour |
||
420 | begin
|
||
421 | Init := PResSimulP.TabResult[1, RuleRationInit];
|
||
422 | Quantite := aDuree + bDuree * (Age - Init); |
||
423 | end;
|
||
424 | 1: // a+b*semaine |
||
425 | begin
|
||
426 | Init := PResSimulP.TabResult[1, RuleRationInit];
|
||
427 | Quantite := aDuree + bDuree * Trunc((Age - Init) / 7);
|
||
428 | end;
|
||
429 | else
|
||
430 | Quantite := 0;
|
||
431 | end;
|
||
432 | 3: // f(poids vif) |
||
433 | {
|
||
434 | case EqPV of
|
||
435 | 0: // a+b*PV
|
||
436 | Quantite := aPV + bPV * PV;
|
||
437 | 1: // a*PV^b
|
||
438 | Quantite := aPV * Power(PV, bPV);
|
||
439 | 2: // a*(1-exp(-b*PV))
|
||
440 | Quantite := aPV * (1 - Exp(-bPV * PV));
|
||
441 | else
|
||
442 | Quantite := 0;
|
||
443 | end;
|
||
444 | }
|
||
445 | Quantite := CalcIngere(EqPV, Unite, aPV, bPV, PV); |
||
446 | else
|
||
447 | Quantite := 0;
|
||
448 | end;
|
||
449 | end;
|
||
450 | // Convertion de ED, EM, EN en quantit? si besoin
|
||
451 | if PRationP.Rule[NumRuleRation].RuleType = 0 then |
||
452 | // % AdLib : Unite est d?finie au niveau du profil
|
||
453 | Unite := PProfilP.Unite |
||
454 | else
|
||
455 | Unite := PRationP.Rule[NumRuleRation].Unite; |
||
456 | case Unite of |
||
457 | 1: // ED (MJ/j) |
||
458 | Ingere := Quantite / (PctAli1 / 100 * RecCC1.ED_C *
|
||
459 | RecCC1.MS / 1000 + PctAli2 / 100 * RecCC2.ED_C * RecCC2.MS / 1000); |
||
460 | 2: // EM (MJ/j) |
||
461 | Ingere := Quantite / (PctAli1 / 100 * RecCC1.EM_C *
|
||
462 | RecCC1.MS / 1000 + PctAli2 / 100 * RecCC2.EM_C * RecCC2.MS / 1000); |
||
463 | 3: // EN (MJ/j) |
||
464 | Ingere := Quantite / (PctAli1 / 100 * RecCC1.EN_C *
|
||
465 | RecCC1.MS / 1000 + PctAli2 / 100 * RecCC2.EN_C * RecCC2.MS / 1000); |
||
466 | 4: // MS (kg/j) |
||
467 | Ingere := Quantite / (PctAli1 / 100 * RecCC1.MS /
|
||
468 | 1000 + PctAli2 / 100 * RecCC2.MS / 1000); |
||
469 | else // Quantit? (kg/j) |
||
470 | Ingere := Quantite; |
||
471 | end;
|
||
472 | end;
|
||
473 | // Gaspillage
|
||
474 | if (Simul = -1) and (Ration = -1) then // Ad libitum : pas de gaspillage |
||
475 | Gaspillage := 0
|
||
476 | else
|
||
477 | Gaspillage := PRationP.Rule[NumRuleRation].Gaspillage; |
||
478 | // Sensibilit? (aliment)
|
||
479 | case Variable of |
||
480 | 5: // Quantit? d'aliment |
||
481 | Ingere := Ingere * Variation; |
||
482 | 6: // Gaspillage |
||
483 | Gaspillage := Max(Gaspillage + Variation, 0);
|
||
484 | 7..18: // Acides amin?s |
||
485 | begin
|
||
486 | TabAAtotal1[Variable - 6] := TabAAtotal1[Variable - 6] * Variation; |
||
487 | TabAAtotal2[Variable - 6] := TabAAtotal2[Variable - 6] * Variation; |
||
488 | if (Variable = 9) or (Variable = 13) then // met+cys ou phe+tyr |
||
489 | begin
|
||
490 | TabAAtotal1[Variable - 7] := TabAAtotal1[Variable - 7] * Variation; |
||
491 | TabAAtotal2[Variable - 7] := TabAAtotal2[Variable - 7] * Variation; |
||
492 | end;
|
||
493 | end;
|
||
494 | end;
|
||
495 | PResSimulP.TabResult[11, PResSimulP.NbJSim] := Ingere;
|
||
496 | PResSimulP.TabResult[112, PResSimulP.NbJSim] := Gaspillage;
|
||
497 | PResSimulP.TabResult[113, PResSimulP.NbJSim] := Ingere / (1 - Gaspillage); |
||
498 | // Calcul des apports journaliers
|
||
499 | IngSec1 := Ingere * PctAli1 / 100 * RecCC1.MS / 1000; |
||
500 | IngSec2 := Ingere * PctAli2 / 100 * RecCC2.MS / 1000; |
||
501 | IngereSec := IngSec1 + IngSec2; |
||
502 | if Ingere <> 0 then |
||
503 | PResSimulP.TabResult[106, PResSimulP.NbJSim] := IngereSec / Ingere;
|
||
504 | // Energie brute ing?r?e
|
||
505 | PResSimulP.TabResult[12, PResSimulP.NbJSim] :=
|
||
506 | IngSec1 * RecCC1.EB + IngSec2 * RecCC2.EB; |
||
507 | // Composants digestibles ing?r?s
|
||
508 | TabDEIntake[1] := IngSec1 * RecCC1.MAT * RecCC1.dMAT_C / 100 + |
||
509 | IngSec2 * RecCC2.MAT * RecCC2.dMAT_C / 100;
|
||
510 | TabDEIntake[2] := IngSec1 * RecCC1.Lip * RecCC1.dLip_C / 100 + |
||
511 | IngSec2 * RecCC2.Lip * RecCC2.dLip_C / 100;
|
||
512 | TabDEIntake[3] := IngSec1 * RecCC1.Amidon + IngSec2 * RecCC2.Amidon;
|
||
513 | TabDEIntake[4] := IngSec1 * RecCC1.Sucres + IngSec2 * RecCC2.Sucres;
|
||
514 | TabDEIntake[5] := IngSec1 * RecCC1.CB * RecCC1.dCB_C / 100 + |
||
515 | IngSec2 * RecCC2.CB * RecCC2.dCB_C / 100;
|
||
516 | TabDEIntake[6] := IngSec1 * RecCC1.Residu * RecCC1.dResidu_C /
|
||
517 | 100 + IngSec2 * RecCC2.Residu * RecCC2.dResidu_C / 100; |
||
518 | for i := 1 to 6 do |
||
519 | PResSimulP.TabResult[12 + i, PResSimulP.NbJSim] := TabDEIntake[i];
|
||
520 | // Acides amin?s totaux ing?r?s
|
||
521 | for i := 0 to 12 do |
||
522 | PResSimulP.TabResult[93 + i, PResSimulP.NbJSim] :=
|
||
523 | IngSec1 * TabAAtotal1[i] + IngSec2 * TabAAtotal2[i]; |
||
524 | // Acides amin?s digestibles ing?r?s
|
||
525 | for i := 0 to 12 do |
||
526 | TabAAdig[i] := IngSec1 * TabAAtotal1[i] * TabCUDAA1[i] / 100 +
|
||
527 | IngSec2 * TabAAtotal2[i] * TabCUDAA2[i] / 100;
|
||
528 | for i := 0 to 12 do |
||
529 | PResSimulP.TabResult[19 + i, PResSimulP.NbJSim] := TabAAdig[i];
|
||
530 | ////////////////
|
||
531 | // Simulation //
|
||
532 | ////////////////
|
||
533 | // Calcul de l'ED croissance
|
||
534 | if Ingere = 0 then |
||
535 | DEcrois := 0
|
||
536 | else
|
||
537 | DEcrois := (IngSec1 * RecCC1.ED_C + IngSec2 * RecCC2.ED_C) / Ingere; |
||
538 | PResSimulP.TabResult[109, PResSimulP.NbJSim] := DEcrois;
|
||
539 | // Calcul de l'EM croissance
|
||
540 | if Ingere = 0 then |
||
541 | MEcrois := 0
|
||
542 | else
|
||
543 | MEcrois := (IngSec1 * RecCC1.EM_C + IngSec2 * RecCC2.EM_C) / Ingere; |
||
544 | PResSimulP.TabResult[89, PResSimulP.NbJSim] := MEcrois;
|
||
545 | // Calcul de l'EN croissance
|
||
546 | if Ingere = 0 then |
||
547 | NEcrois := 0
|
||
548 | else
|
||
549 | NEcrois := (IngSec1 * RecCC1.EN_C + IngSec2 * RecCC2.EN_C) / Ingere; |
||
550 | PResSimulP.TabResult[90, PResSimulP.NbJSim] := NEcrois;
|
||
551 | // D?pot de prot?ines et d'acides amin?s
|
||
552 | for i := 0 to 12 do |
||
553 | begin
|
||
554 | TabAAm[i] := AAm75[i] * Power(PV, 0.75) + IngereSec * AAendogene[i];
|
||
555 | TabAAfG[i] := (TabAAdig[i] - TabAAm[i]) * kAA[i]; |
||
556 | TabPDAA[i] := TabAAfG[i] / AAbody[i]; |
||
557 | PResSimulP.TabResult[32 + i, PResSimulP.NbJSim] := TabPDAA[i];
|
||
558 | end;
|
||
559 | // met+cys
|
||
560 | PResSimulP.TabResult[45, PResSimulP.NbJSim] :=
|
||
561 | (TabAAfG[2] + TabAAfG[3]) / (AAbody[2] + AAbody[3]); |
||
562 | // phe+tyr
|
||
563 | PResSimulP.TabResult[46, PResSimulP.NbJSim] :=
|
||
564 | (TabAAfG[6] + TabAAfG[7]) / (AAbody[6] + AAbody[7]); |
||
565 | // Premier facteur limitant le d?pot de prot?ines
|
||
566 | PDFirstLimit := PResSimulP.TabResult[32, PResSimulP.NbJSim];
|
||
567 | for i := 33 to 46 do |
||
568 | if (i <> 35) and (i <> 39) // Ignorer 'cys' et 'tyr' |
||
569 | then
|
||
570 | if PResSimulP.TabResult[i, PResSimulP.NbJSim] < PDFirstLimit then |
||
571 | PDFirstLimit := PResSimulP.TabResult[i, PResSimulP.NbJSim]; |
||
572 | PResSimulP.TabResult[47, PResSimulP.NbJSim] := PDFirstLimit;
|
||
573 | // Besoins en ?nergie nette
|
||
574 | // 1) NEmAL
|
||
575 | FHP60 := FHPint + FHPpente * IngereAL * 1000 * NEcrois / Power(PV, 0.6); |
||
576 | NEmAL := Entretien * (Standing * NEact60h + kBR * FHP60) * Power(PV, 0.6);
|
||
577 | PResSimulP.TabResult[71, PResSimulP.NbJSim] := NEmAL;
|
||
578 | // 2) NEm
|
||
579 | FHP60 := FHPint + FHPpente * Ingere * 1000 * NEcrois / Power(PV, 0.6); |
||
580 | PResSimulP.TabResult[91, PResSimulP.NbJSim] := FHP60;
|
||
581 | NEm := Entretien * (Standing * NEact60h + kBR * FHP60) * Power(PV, 0.6);
|
||
582 | PResSimulP.TabResult[72, PResSimulP.NbJSim] := NEm;
|
||
583 | // R?partition de l'?nergie
|
||
584 | NEintakeAL := 1000 * IngereAL * NEcrois;
|
||
585 | PDAL := 1000 * BGompertz * p * Ln(Pmat / p);
|
||
586 | px1AL := (NEintakeAL - NEmAL) / NEmAL + 1;
|
||
587 | py1AL := PDAL * GEProtJaap; |
||
588 | PResSimulP.TabResult[110, PResSimulP.NbJSim] := px1AL;
|
||
589 | PResSimulP.TabResult[111, PResSimulP.NbJSim] := py1AL;
|
||
590 | mr := (mrPV1 * PVmr2 - mrPV2 * PVmr1 - PV * mrPV1 + PV * mrPV2) / |
||
591 | (-PVmr1 + PVmr2) * (NEmAL / 1000);
|
||
592 | PResSimulP.TabResult[51, PResSimulP.NbJSim] := mr;
|
||
593 | F := 1 / 2 * (mr * power(px1AL, 2) - 2 * px1AL * py1AL - mr) / |
||
594 | (-py1AL + px1AL * mr - mr); |
||
595 | if (F <= 1) or (py1AL / (px1AL - 1) <= mr) then // Minimum (courbure convexe) |
||
596 | begin
|
||
597 | F := INFINI; |
||
598 | a := py1AL / (px1AL - 1);
|
||
599 | b := 0;
|
||
600 | end
|
||
601 | else
|
||
602 | if mr >= 0 then |
||
603 | begin
|
||
604 | a := -(px1AL * mr - mr - 2 * py1AL) / (px1AL - 1); |
||
605 | b := (-py1AL + px1AL * mr - mr) / (power(px1AL, 2) - 2 * px1AL + 1); |
||
606 | end
|
||
607 | else
|
||
608 | begin
|
||
609 | a := 2 * py1AL / (F - 1); |
||
610 | b := -py1AL / power((F - 1), 2); |
||
611 | end;
|
||
612 | PResSimulP.TabResult[52, PResSimulP.NbJSim] := F;
|
||
613 | PResSimulP.TabResult[74, PResSimulP.NbJSim] := a;
|
||
614 | PResSimulP.TabResult[75, PResSimulP.NbJSim] := b;
|
||
615 | if px1AL < F then |
||
616 | PDmaxE := a * (F - 1) + b * Power((F - 1), 2) |
||
617 | else
|
||
618 | PDmaxE := py1AL; |
||
619 | PResSimulP.TabResult[69, PResSimulP.NbJSim] := PDmaxE;
|
||
620 | NEintake := 1000 * Ingere * NEcrois;
|
||
621 | px1 := (NEintake - NEm) / NEmAL + 1;
|
||
622 | PResSimulP.TabResult[76, PResSimulP.NbJSim] := px1;
|
||
623 | if px1 < F then |
||
624 | py1 := a * (px1 - 1) + b * Power(px1 - 1, 2) |
||
625 | else
|
||
626 | py1 := PDmaxE; |
||
627 | PResSimulP.TabResult[77, PResSimulP.NbJSim] := py1;
|
||
628 | // D?p?t de prot?ines
|
||
629 | if AALimit
|
||
630 | then
|
||
631 | PD := Min(py1 / GEProtJaap, PDFirstLimit) |
||
632 | else
|
||
633 | PD := py1 / GEProtJaap; |
||
634 | PResSimulP.TabResult[79, PResSimulP.NbJSim] := PD;
|
||
635 | EnergyPD := PD * GEProtJaap; |
||
636 | PResSimulP.TabResult[66, PResSimulP.NbJSim] := EnergyPD;
|
||
637 | // Apport en ?nergie
|
||
638 | PfreeNE := 0;
|
||
639 | for i := 1 to 6 do |
||
640 | begin
|
||
641 | TabProtFreeME[i] := TabDEIntake[i] * ValEnergie[i, 4] * ValEnergie[i, 2]; |
||
642 | TabProtFreeNE[i] := TabProtFreeME[i] * ValEnergie[i, 5];
|
||
643 | PfreeNE := PfreeNE + TabProtFreeNE[i]; |
||
644 | PResSimulP.TabResult[i + 52, PResSimulP.NbJSim] := TabProtFreeNE[i];
|
||
645 | end;
|
||
646 | PResSimulP.TabResult[59, PResSimulP.NbJSim] := PfreeNE;
|
||
647 | // Exc?s de prot?ines
|
||
648 | ExcessProt := TabDEIntake[1] - PD;
|
||
649 | PResSimulP.TabResult[60, PResSimulP.NbJSim] := ExcessProt;
|
||
650 | ObligUrinELoss := 168 * Power(PV, 0.175); |
||
651 | PResSimulP.TabResult[61, PResSimulP.NbJSim] := ObligUrinELoss;
|
||
652 | UrinEnergy := ((ExcessProt / 6.25) * VarUrinELoss) + ObligUrinELoss;
|
||
653 | PResSimulP.TabResult[62, PResSimulP.NbJSim] := UrinEnergy;
|
||
654 | MEexcessProt := (ExcessProt * GEProtJaap) - UrinEnergy; |
||
655 | PResSimulP.TabResult[63, PResSimulP.NbJSim] := MEexcessProt;
|
||
656 | NEexcessProt := MEexcessProt * kProtJaap; |
||
657 | PResSimulP.TabResult[64, PResSimulP.NbJSim] := NEexcessProt;
|
||
658 | PDfreeNEintake := PfreeNE + NEexcessProt; |
||
659 | PResSimulP.TabResult[65, PResSimulP.NbJSim] := PDfreeNEintake;
|
||
660 | NEintakeSim := EnergyPD + PDfreeNEintake; |
||
661 | PResSimulP.TabResult[67, PResSimulP.NbJSim] := NEintakeSim;
|
||
662 | if Ingere <> 0 then |
||
663 | PResSimulP.TabResult[88, PResSimulP.NbJSim] := NEintakeSim / (Ingere * 1000); |
||
664 | MEintake := TabProtFreeME[1] + TabProtFreeME[2] + TabProtFreeME[3] + |
||
665 | TabProtFreeME[4] + TabProtFreeME[5] + TabProtFreeME[6] + MEexcessProt + EnergyPD; |
||
666 | PResSimulP.TabResult[86, PResSimulP.NbJSim] := MEintake;
|
||
667 | if Ingere <> 0 then |
||
668 | PResSimulP.TabResult[87, PResSimulP.NbJSim] := MEintake / (Ingere * 1000); |
||
669 | // Besoin en ?nergie pour le d?pot de prot?ines
|
||
670 | PDfreeNEPD := PD * GEProtJaap * NEPD; |
||
671 | PResSimulP.TabResult[68, PResSimulP.NbJSim] := PDfreeNEPD;
|
||
672 | PDfreeNEreq := PDfreeNEPD + NEm; |
||
673 | PResSimulP.TabResult[73, PResSimulP.NbJSim] := PDfreeNEreq;
|
||
674 | PResSimulP.TabResult[92, PResSimulP.NbJSim] := NEintakeSim - NEm;
|
||
675 | // D?p?t de lipides
|
||
676 | EnergyLD := PDfreeNEintake - PDfreeNEreq; |
||
677 | LD := EnergyLD / ValEnergie[2, 2]; |
||
678 | PResSimulP.TabResult[80, PResSimulP.NbJSim] := LD;
|
||
679 | // Performances
|
||
680 | p := p + PD / 1000;
|
||
681 | PResSimulP.TabResult[81, PResSimulP.NbJSim] := p;
|
||
682 | l := l + LD / 1000;
|
||
683 | PResSimulP.TabResult[82, PResSimulP.NbJSim] := l;
|
||
684 | if (p > 0) and (l > 0) then |
||
685 | // Calcul du PVV ? partir des poids de prot?ines et lipides
|
||
686 | PVVafter := ((Pallom * Power(p * 1000, Ballom)) +
|
||
687 | (Lallom * Power(l * 1000, Ballom))) / 1000 |
||
688 | else
|
||
689 | begin
|
||
690 | PVVafter := PVV; |
||
691 | ErrSimul := True; |
||
692 | end;
|
||
693 | PVafter := CalcPV(PVVafter); |
||
694 | PResSimulP.TabResult[83, PResSimulP.NbJSim] := PVafter;
|
||
695 | GMQ := PVafter - PV; |
||
696 | PResSimulP.TabResult[84, PResSimulP.NbJSim] := GMQ;
|
||
697 | // if GMQ <> 0
|
||
698 | // then
|
||
699 | // PResSimulP.TabResult[85, PResSimulP.NbJSim] := Ingere / GMQ ;
|
||
700 | // Test de fin de simulation
|
||
701 | if ModeFinSim = 0 then // Dur?e |
||
702 | FinSimul := PResSimulP.NbJSim >= Duree |
||
703 | else // Poids vif |
||
704 | FinSimul := PV >= PVFin; |
||
705 | Inc(Age); |
||
706 | PV := PVafter; |
||
707 | until FinSimul or ErrSimul or (PResSimulP.NbJSim = MAX_LIG_PORC); |
||
708 | end;
|
||
709 | |||
710 | end. |