root / numhess.inc @ 3
Historique | Voir | Annoter | Télécharger (1,668 ko)
1 | 3 | avalancogn | { ****************************************************************** |
---|---|---|---|
2 | Numerical hessian and gradient |
||
3 | ****************************************************************** } |
||
4 | |||
5 | procedure HessGrad(X, G : TVector; H : TMatrix); |
||
6 | |||
7 | const |
||
8 | Eta = 1.0E-6; { Relative increment } |
||
9 | |||
10 | var |
||
11 | Delta, Xminus, Xplus, Fminus, Fplus : TVector; |
||
12 | Temp1, Temp2, F, F2plus : Float; |
||
13 | I, J : Integer; |
||
14 | |||
15 | begin |
||
16 | DimVector(Delta, Nvar); { Increments } |
||
17 | DimVector(Xminus, Nvar); { X - Delta } |
||
18 | DimVector(Xplus, Nvar); { X + Delta } |
||
19 | DimVector(Fminus, Nvar); { F(X - Delta) } |
||
20 | DimVector(Fplus, Nvar); { F(X + Delta) } |
||
21 | |||
22 | F := Func(X); |
||
23 | |||
24 | for I := 1 to Nvar do |
||
25 | begin |
||
26 | if X[I] <> 0.0 then |
||
27 | Delta[I] := Eta * Abs(X[I]) |
||
28 | else |
||
29 | Delta[I] := Eta; |
||
30 | Xplus[I] := X[I] + Delta[I]; |
||
31 | Xminus[I] := X[I] - Delta[I]; |
||
32 | end; |
||
33 | |||
34 | for I := 1 to Nvar do |
||
35 | begin |
||
36 | Temp1 := X[I]; |
||
37 | X[I] := Xminus[I]; |
||
38 | Fminus[I] := Func(X); |
||
39 | X[I] := Xplus[I]; |
||
40 | Fplus[I] := Func(X); |
||
41 | X[I] := Temp1; |
||
42 | end; |
||
43 | |||
44 | for I := 1 to Nvar do |
||
45 | begin |
||
46 | G[I] := (Fplus[I] - Fminus[I]) / (2.0 * Delta[I]); |
||
47 | H[I,I] := (Fplus[I] + Fminus[I] - 2.0 * F) / Sqr(Delta[I]); |
||
48 | end; |
||
49 | |||
50 | for I := 1 to Pred(Nvar) do |
||
51 | begin |
||
52 | Temp1 := X[I]; |
||
53 | X[I] := Xplus[I]; |
||
54 | for J := Succ(I) to Nvar do |
||
55 | begin |
||
56 | Temp2 := X[J]; |
||
57 | X[J] := Xplus[J]; |
||
58 | F2plus := Func(X); |
||
59 | H[I,J] := (F2plus - Fplus[I] - Fplus[J] + F) / (Delta[I] * Delta[J]); |
||
60 | H[J,I] := H[I,J]; |
||
61 | X[J] := Temp2; |
||
62 | end; |
||
63 | X[I] := Temp1; |
||
64 | end; |
||
65 | |||
66 | end; |