root / Ludo / numhess.inc @ 3
Historique | Voir | Annoter | Télécharger (1,668 ko)
1 |
{ ****************************************************************** |
---|---|
2 |
Numerical hessian and gradient |
3 |
****************************************************************** } |
4 |
|
5 |
procedure HessGrad(X, G : TVector; H : TMatrix); |
6 |
|
7 |
const |
8 |
Eta = 1.0E-6; { Relative increment } |
9 |
|
10 |
var |
11 |
Delta, Xminus, Xplus, Fminus, Fplus : TVector; |
12 |
Temp1, Temp2, F, F2plus : Float; |
13 |
I, J : Integer; |
14 |
|
15 |
begin |
16 |
DimVector(Delta, Nvar); { Increments } |
17 |
DimVector(Xminus, Nvar); { X - Delta } |
18 |
DimVector(Xplus, Nvar); { X + Delta } |
19 |
DimVector(Fminus, Nvar); { F(X - Delta) } |
20 |
DimVector(Fplus, Nvar); { F(X + Delta) } |
21 |
|
22 |
F := Func(X); |
23 |
|
24 |
for I := 1 to Nvar do |
25 |
begin |
26 |
if X[I] <> 0.0 then |
27 |
Delta[I] := Eta * Abs(X[I]) |
28 |
else |
29 |
Delta[I] := Eta; |
30 |
Xplus[I] := X[I] + Delta[I]; |
31 |
Xminus[I] := X[I] - Delta[I]; |
32 |
end; |
33 |
|
34 |
for I := 1 to Nvar do |
35 |
begin |
36 |
Temp1 := X[I]; |
37 |
X[I] := Xminus[I]; |
38 |
Fminus[I] := Func(X); |
39 |
X[I] := Xplus[I]; |
40 |
Fplus[I] := Func(X); |
41 |
X[I] := Temp1; |
42 |
end; |
43 |
|
44 |
for I := 1 to Nvar do |
45 |
begin |
46 |
G[I] := (Fplus[I] - Fminus[I]) / (2.0 * Delta[I]); |
47 |
H[I,I] := (Fplus[I] + Fminus[I] - 2.0 * F) / Sqr(Delta[I]); |
48 |
end; |
49 |
|
50 |
for I := 1 to Pred(Nvar) do |
51 |
begin |
52 |
Temp1 := X[I]; |
53 |
X[I] := Xplus[I]; |
54 |
for J := Succ(I) to Nvar do |
55 |
begin |
56 |
Temp2 := X[J]; |
57 |
X[J] := Xplus[J]; |
58 |
F2plus := Func(X); |
59 |
H[I,J] := (F2plus - Fplus[I] - Fplus[J] + F) / (Delta[I] * Delta[J]); |
60 |
H[J,I] := H[I,J]; |
61 |
X[J] := Temp2; |
62 |
end; |
63 |
X[I] := Temp1; |
64 |
end; |
65 |
|
66 |
end; |
67 |
|