root / Version 0.9 / RS232_MUX.X / hardware_uart.h @ 10dcb6e9
Historique | Voir | Annoter | Télécharger (21,533 ko)
1 |
/* Microchip Technology Inc. and its subsidiaries. You may use this software
|
---|---|
2 |
* and any derivatives exclusively with Microchip products.
|
3 |
*
|
4 |
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES, WHETHER
|
5 |
* EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE, INCLUDING ANY IMPLIED
|
6 |
* WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
|
7 |
* PARTICULAR PURPOSE, OR ITS INTERACTION WITH MICROCHIP PRODUCTS, COMBINATION
|
8 |
* WITH ANY OTHER PRODUCTS, OR USE IN ANY APPLICATION.
|
9 |
*
|
10 |
* IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE,
|
11 |
* INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND
|
12 |
* WHATSOEVER RELATED TO THE SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS
|
13 |
* BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE
|
14 |
* FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS
|
15 |
* IN ANY WAY RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF
|
16 |
* ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
|
17 |
*
|
18 |
* MICROCHIP PROVIDES THIS SOFTWARE CONDITIONALLY UPON YOUR ACCEPTANCE OF THESE
|
19 |
* TERMS.
|
20 |
*/
|
21 |
|
22 |
/*
|
23 |
* File: hardware_uart.h
|
24 |
* Author: Enzo Niro
|
25 |
* Comments: Library made for RS232 MUX board
|
26 |
* Revision history: V1.0
|
27 |
*/
|
28 |
|
29 |
|
30 |
#ifndef RS232_HARDWAREUART_H
|
31 |
#define RS232_HARDWAREUART_H
|
32 |
|
33 |
#include <xc.h> // include processor files - each processor file is guarded. |
34 |
#include <stdbool.h> |
35 |
#include <avr/interrupt.h> |
36 |
#include <avr/eeprom.h> |
37 |
|
38 |
///////////////////////////////////////////////////////////////
|
39 |
//Definitions
|
40 |
|
41 |
//Values registers
|
42 |
|
43 |
#define F5BIT_MODE 0x00 |
44 |
#define F6BIT_MODE 0x01 |
45 |
#define F7BIT_MODE 0x02 |
46 |
#define F8BIT_MODE 0x03 |
47 |
#define F9LBIT_MODE 0x06 |
48 |
#define F9HBIT_MODE 0x07 |
49 |
|
50 |
#define NO_PARITY 0x00 |
51 |
#define EVEN_PARITY 0x02 |
52 |
#define ODD_PARITY 0x03 |
53 |
|
54 |
#define ONE_STOPBIT 0x00 |
55 |
#define TWO_STOPBITS 0x01 |
56 |
|
57 |
|
58 |
//EEPROM addresses
|
59 |
|
60 |
#define ADDR_BAUD_2400 0x0 |
61 |
#define ADDR_BAUD_4800 0x1 |
62 |
#define ADDR_BAUD_9600 0x2 |
63 |
#define ADDR_BAUD_19200 0x3 |
64 |
#define ADDR_BAUD_38400 0x4 |
65 |
#define ADDR_BAUD_57600 0x5 |
66 |
#define ADDR_BAUD_115200 0x6 |
67 |
|
68 |
#define ADDR_PARITY_NONE 0x0 |
69 |
#define ADDR_PARITY_EVEN 0x1 |
70 |
#define ADDR_PARITY_ODD 0x2 |
71 |
|
72 |
#define ADDR_DATA_F5 0x0 |
73 |
#define ADDR_DATA_F6 0x1 |
74 |
#define ADDR_DATA_F7 0x2 |
75 |
#define ADDR_DATA_F8 0x3 |
76 |
#define ADDR_DATA_F9L 0x4 |
77 |
#define ADDR_DATA_F9H 0x5 |
78 |
|
79 |
#define ADDR_STOP_ONE 0x0 |
80 |
#define ADDR_STOP_TWO 0x1 |
81 |
|
82 |
|
83 |
#define DEFAULT_ADDR_BAUD ADDR_BAUD_9600
|
84 |
#define DEFAULT_ADDR_PARITY ADDR_PARITY_NONE
|
85 |
#define DEFAULT_ADDR_DATA ADDR_DATA_F8
|
86 |
#define DEFAULT_ADDR_STOP ADDR_STOP_ONE
|
87 |
#define DEFAULT_VALUE_DEBUG_LED 0x1F |
88 |
|
89 |
#define EEPROM_DEBUG_LED_ADDR 0x8 |
90 |
|
91 |
|
92 |
|
93 |
//According to AVR32DA48 pins
|
94 |
|
95 |
#define USART0_PORT_PINS 0x01 |
96 |
#define USART0_DEBUG_LED 0x0C |
97 |
|
98 |
#define USART1_PORT_PINS 0x01 |
99 |
#define USART1_DEBUG_LED 0x0C |
100 |
|
101 |
#define USART2_PORT_PINS 0x01 |
102 |
#define USART2_DEBUG_LED 0x0C |
103 |
|
104 |
#define USART3_PORT_PINS 0x01 |
105 |
#define USART3_DEBUG_LED 0x0C |
106 |
|
107 |
#define USART4_PORT_PINS 0x01 |
108 |
#define USART4_DEBUG_LED 0x0C |
109 |
|
110 |
//Port index for debug leds
|
111 |
#define USART0_INDEX 0 |
112 |
#define USART1_INDEX 1 |
113 |
#define USART2_INDEX 2 |
114 |
#define USART3_INDEX 3 |
115 |
#define USART4_INDEX 4 |
116 |
|
117 |
|
118 |
#ifdef __cplusplus
|
119 |
extern "C" { |
120 |
#endif /* __cplusplus */ |
121 |
|
122 |
|
123 |
|
124 |
///////////////////////////////////////////////////////////////
|
125 |
//Global Vars
|
126 |
|
127 |
typedef struct RXREAD RXREAD; |
128 |
struct RXREAD
|
129 |
{ |
130 |
uint8_t _rxReicv; // temp byte
|
131 |
uint8_t _rxBuf[256]; //back end serial buffer |
132 |
uint16_t bytesAvailable; //show if bytes available...
|
133 |
}; |
134 |
|
135 |
|
136 |
typedef struct eepromPort eepromPort; |
137 |
struct eepromPort
|
138 |
{ |
139 |
uint8_t regA; // register A for speed and parity configuration
|
140 |
uint8_t regB; // register B for Data structure and stop bits
|
141 |
}; |
142 |
|
143 |
typedef struct cfgPort cfgPort; |
144 |
struct cfgPort
|
145 |
{ |
146 |
uint16_t baud; // Port speed
|
147 |
uint8_t parity; // Parity for frame structure
|
148 |
uint8_t dataByte; // Data byte structure
|
149 |
uint8_t stopBit; // Stop bits for frame structure
|
150 |
uint8_t debugLed; |
151 |
}; |
152 |
|
153 |
//EEPROM data structure (for reading registers)
|
154 |
eepromPort eepromVCOM[4], eepromDebugLeds;
|
155 |
|
156 |
|
157 |
//RX structure for reading buffers from serial ports
|
158 |
volatile RXREAD _RX0, _RX1, _RX2, _RX3, _RX4;
|
159 |
volatile bool _hasWritten[] = {false, false, false, false, false}; |
160 |
volatile bool _hasRead[] = {false, false, false, false, false}; |
161 |
|
162 |
|
163 |
///////////////////////////////////////////////////////////////
|
164 |
//Functions
|
165 |
|
166 |
|
167 |
/**
|
168 |
<p><b>void getEEPROMCfg(void)</b></p>
|
169 |
<p><b>Read eeprom values stored for all serial ports</b></p>
|
170 |
*/
|
171 |
void getEEPROMCfg(void) |
172 |
{ |
173 |
uint8_t i = 0, j = 0; |
174 |
while(j < 8) |
175 |
{ |
176 |
//Read at first bytes
|
177 |
eepromVCOM[i].regA = eeprom_read_byte(j); |
178 |
eepromVCOM[i].regB = eeprom_read_byte(j+1);
|
179 |
//Then check if writing default values is necessary
|
180 |
if(eepromVCOM[i].regA == 0xFF) |
181 |
{ |
182 |
eepromVCOM[i].regA = (DEFAULT_ADDR_BAUD << 4) | (DEFAULT_ADDR_PARITY);
|
183 |
eeprom_write_byte(j, (DEFAULT_ADDR_BAUD << 4) | (DEFAULT_ADDR_PARITY));
|
184 |
} |
185 |
if(eepromVCOM[i].regB == 0xFF) |
186 |
{ |
187 |
eepromVCOM[i].regB = (DEFAULT_ADDR_DATA << 4) | (DEFAULT_ADDR_STOP);
|
188 |
eeprom_write_byte(j+1, (DEFAULT_ADDR_DATA << 4) | (DEFAULT_ADDR_STOP)); |
189 |
} |
190 |
i++; |
191 |
j+=2;
|
192 |
} |
193 |
|
194 |
//And finally, check debug leds value
|
195 |
eepromDebugLeds.regA = eeprom_read_byte(EEPROM_DEBUG_LED_ADDR); |
196 |
if(eepromDebugLeds.regA == 0xFF) |
197 |
{ |
198 |
eepromDebugLeds.regA = DEFAULT_VALUE_DEBUG_LED; |
199 |
eeprom_write_byte(EEPROM_DEBUG_LED_ADDR, DEFAULT_VALUE_DEBUG_LED); |
200 |
} |
201 |
|
202 |
|
203 |
} |
204 |
|
205 |
/**
|
206 |
<p><b>uint8_t getDebugLedsConfiguration(void)</b></p>
|
207 |
<p><b>Get leds configuration for debug (TX/RX) of each serial port</b></p>
|
208 |
<p><b> Return : uint8_t -> state of each leds [VCOM4 VCOM3 VCOM2 VCOM1 MCOM]</b></p>
|
209 |
*/
|
210 |
uint8_t getDebugLedsConfiguration(void)
|
211 |
{ |
212 |
return eepromDebugLeds.regA;
|
213 |
} |
214 |
|
215 |
|
216 |
|
217 |
|
218 |
/**
|
219 |
<p><b>void readConfiguration(cfgPort *cfg, uint8_t n)</b></p>
|
220 |
<p><b>Get configuration with eeprom read values</b></p>
|
221 |
<p><b> cfgPort -> Serial port configuration</b></p>
|
222 |
<p><b> n -> Serial port to configure</b></p>
|
223 |
*/
|
224 |
void readConfiguration(cfgPort *cfg, uint8_t n)
|
225 |
{ |
226 |
//BAUD value register for these frequencies in this order :
|
227 |
//2400, 4800, 9600, 19200, 38400, 57600, 115200
|
228 |
uint16_t speedCfg[] = { 40000, 20000, 10000, 5000, 2500, 1667, 833 }; |
229 |
uint8_t parityCfg[] = { NO_PARITY, EVEN_PARITY, ODD_PARITY }; |
230 |
uint8_t dataCfg[] = { F5BIT_MODE, F6BIT_MODE, F7BIT_MODE, F8BIT_MODE, F9LBIT_MODE, F9HBIT_MODE }; |
231 |
uint8_t stopCfg[] = { ONE_STOPBIT, TWO_STOPBITS }; |
232 |
|
233 |
cfg->baud = speedCfg[(eepromVCOM[n].regA >> 4)];
|
234 |
cfg->parity = parityCfg[(eepromVCOM[n].regA & 0xF)];
|
235 |
cfg->dataByte = dataCfg[(eepromVCOM[n].regB >> 4)];
|
236 |
cfg->stopBit = stopCfg[(eepromVCOM[n].regB & 0xF)];
|
237 |
} |
238 |
|
239 |
|
240 |
|
241 |
/**
|
242 |
<p><b>void debugLedsTest(void)</b></p>
|
243 |
<p><b>Debug leds test sequence</b></p>
|
244 |
*/
|
245 |
|
246 |
|
247 |
void debugLedsTest(void) |
248 |
{ |
249 |
PORT_t *port; |
250 |
uint16_t addrPorts[] = {&PORTA, &PORTB, &PORTC, &PORTE, &PORTF }; |
251 |
for(int i = 0; i < 5; i++) |
252 |
{ |
253 |
port = addrPorts[i]; |
254 |
port->OUT = 0x04;
|
255 |
_delay_ms(125);
|
256 |
port->OUT = 0x0C;
|
257 |
_delay_ms(125);
|
258 |
port->OUT = 0x00;
|
259 |
} |
260 |
} |
261 |
|
262 |
/**
|
263 |
<p><b>void senseDebugLeds(void)</b></p>
|
264 |
<p><b>Call this to update leds status</b></p>
|
265 |
*/
|
266 |
void senseDebugLeds(void) |
267 |
{ |
268 |
///////////////////////////
|
269 |
//Check Master Port
|
270 |
if(_hasWritten[USART0_INDEX])
|
271 |
{ |
272 |
PORTA.OUT |= 0x04;
|
273 |
_hasWritten[USART0_INDEX] = false;
|
274 |
} |
275 |
else
|
276 |
PORTA.OUT &= 0xFB;
|
277 |
|
278 |
if(_hasRead[USART0_INDEX])
|
279 |
{ |
280 |
PORTA.OUT |= 0x08;
|
281 |
_hasRead[USART0_INDEX] = false;
|
282 |
} |
283 |
else
|
284 |
PORTA.OUT &= 0xF7;
|
285 |
|
286 |
///////////////////////////
|
287 |
//Check VCOM1
|
288 |
if(_hasWritten[USART3_INDEX])
|
289 |
{ |
290 |
PORTC.OUT |= 0x04;
|
291 |
_hasWritten[USART3_INDEX] = false;
|
292 |
} |
293 |
else
|
294 |
PORTC.OUT &= 0xFB;
|
295 |
|
296 |
if(_hasRead[USART3_INDEX])
|
297 |
{ |
298 |
PORTC.OUT |= 0x08;
|
299 |
_hasRead[USART3_INDEX] = false;
|
300 |
} |
301 |
else
|
302 |
PORTC.OUT &= 0xF7;
|
303 |
|
304 |
///////////////////////////
|
305 |
//Check VCOM2
|
306 |
if(_hasWritten[USART1_INDEX])
|
307 |
{ |
308 |
PORTF.OUT |= 0x04;
|
309 |
_hasWritten[USART1_INDEX] = false;
|
310 |
} |
311 |
else
|
312 |
PORTF.OUT &= 0xFB;
|
313 |
|
314 |
if(_hasRead[USART1_INDEX])
|
315 |
{ |
316 |
PORTF.OUT |= 0x08;
|
317 |
_hasRead[USART1_INDEX] = false;
|
318 |
} |
319 |
else
|
320 |
PORTF.OUT &= 0xF7;
|
321 |
|
322 |
///////////////////////////
|
323 |
//Check VCOM3
|
324 |
if(_hasWritten[USART4_INDEX])
|
325 |
{ |
326 |
PORTB.OUT |= 0x04;
|
327 |
_hasWritten[USART4_INDEX] = false;
|
328 |
} |
329 |
else
|
330 |
{ |
331 |
PORTB.OUT &= 0xFB;
|
332 |
} |
333 |
|
334 |
|
335 |
if(_hasRead[USART4_INDEX])
|
336 |
{ |
337 |
PORTB.OUT |= 0x08;
|
338 |
_hasRead[USART4_INDEX] = false;
|
339 |
} |
340 |
else
|
341 |
PORTB.OUT &= 0xF7;
|
342 |
|
343 |
|
344 |
///////////////////////////
|
345 |
//Check VCOM4
|
346 |
if(_hasWritten[USART2_INDEX])
|
347 |
{ |
348 |
PORTE.OUT |= 0x04;
|
349 |
_hasWritten[USART2_INDEX] = false;
|
350 |
} |
351 |
else
|
352 |
PORTE.OUT &= 0xFB;
|
353 |
|
354 |
if(_hasRead[USART2_INDEX])
|
355 |
{ |
356 |
PORTE.OUT |= 0x08;
|
357 |
_hasRead[USART2_INDEX] = false;
|
358 |
} |
359 |
else
|
360 |
PORTE.OUT &= 0xF7;
|
361 |
} |
362 |
|
363 |
|
364 |
/////////////////////////////////////////////////
|
365 |
//For Master port (USART0)
|
366 |
|
367 |
/**
|
368 |
<p><b>void initPort0(uint32_t bauds)</b></p>
|
369 |
<p><b>Init MASTER PORT</b></p>
|
370 |
<p><b>Parameters : uint8_t bauds -> Set bauds speed</b></p>
|
371 |
<p><b> bool enableDebug -> Enable debug leds</b></p>
|
372 |
<p><b> uint8_t chSize -> Data bits</b></p>
|
373 |
<p><b> uint8_t stopBit -> How many stop bits</b></p>
|
374 |
<p><b> uint8_t parity -> Parity type (ODD, EVEN, DISABLED)</b></p>
|
375 |
<p><b>Don't forget to call sei() function after called all initPortx() functions !</p></b>
|
376 |
*/
|
377 |
void initPort0(uint32_t bauds, bool enableDebug, uint8_t chSize, bool stopBit, uint8_t parity) |
378 |
{ |
379 |
if(enableDebug)
|
380 |
PORTA.DIR = USART0_PORT_PINS | USART0_DEBUG_LED; //Set TX/RX IO and RX/TX debug leds for USART0
|
381 |
else
|
382 |
PORTA.DIR = USART0_PORT_PINS; //Set TX/RX IO
|
383 |
|
384 |
USART0.BAUD = bauds; |
385 |
USART0.CTRLA = 0x00; //disable RX complete interrupt |
386 |
USART0.CTRLB = 0xD0; //Enable TX and RX sending |
387 |
USART0.CTRLC = (parity << 4) | (stopBit << 3) | chSize; |
388 |
} |
389 |
|
390 |
|
391 |
/**
|
392 |
<p><b>void txWrite0(uint8_t b)</b></p>
|
393 |
<p><b>Write a byte throught MASTER PORT</b></p>
|
394 |
<p><b>Parameters : uint8_t b -> Byte to write</b></p>
|
395 |
*/
|
396 |
|
397 |
void txWrite0(uint8_t b) //write one byte |
398 |
{ |
399 |
while((USART0.STATUS & 0x20) != 0x20); |
400 |
USART0.TXDATAL = b; |
401 |
_hasWritten[USART0_INDEX] = true;
|
402 |
while((USART0.STATUS & 0x40) != 0x40); //check when we transmit all the bits |
403 |
USART0.STATUS = 0x40; //clear the flag for next transmission |
404 |
} |
405 |
|
406 |
|
407 |
/**
|
408 |
<p><b>uint8_t rxRead0(void)</b></p>
|
409 |
<p><b>Read a byte from MASTER PORT</b></p>
|
410 |
<p><b>Return : uint8_t result -> Byte to read</b></p>
|
411 |
*/
|
412 |
uint8_t rxRead0(void) //Read one byte from buffer |
413 |
{ |
414 |
_hasRead[USART0_INDEX] = true;
|
415 |
return USART0.RXDATAL;
|
416 |
} |
417 |
|
418 |
|
419 |
/**
|
420 |
<p><b>uint16_t portAvailable0(void)</b></p>
|
421 |
<p><b>Get number of bytes available into the MASTER PORT's buffer</b></p>
|
422 |
<p><b>Return : uint16_t bytesAvailable -> Number of bytes</b></p>
|
423 |
*/
|
424 |
uint8_t portAvailable0(void)
|
425 |
{ |
426 |
return ((USART0.STATUS & 0x80) >> 7); |
427 |
} |
428 |
|
429 |
|
430 |
/*ISR(USART0_RXC_vect)
|
431 |
{
|
432 |
//_RX0._rxReicv = USART0.RXDATAL; //read buffer
|
433 |
_RX0._rxBuf[_RX0.bytesAvailable] = USART0.RXDATAL; //Add one byte to the buffer
|
434 |
//_RX0._rxReicv = 0x00; //clear value
|
435 |
if(_RX0.bytesAvailable < 255) //ensure not to overflow buffer size...
|
436 |
_RX0.bytesAvailable++; //a new byte is available into the buffer
|
437 |
//PORTA.OUT ^= 0x3; //debug led
|
438 |
_hasRead[USART0_INDEX] = true;
|
439 |
}*/
|
440 |
|
441 |
|
442 |
|
443 |
|
444 |
|
445 |
/////////////////////////////////////////////////
|
446 |
//For Virtual port 1 (USART3)
|
447 |
|
448 |
|
449 |
/**
|
450 |
<p><b>void initPort1(uint32_t bauds)</b></p>
|
451 |
<p><b>Init MASTER PORT</b></p>
|
452 |
<p><b>Parameters : uint8_t bauds -> Set bauds speed</b></p>
|
453 |
<p><b> bool enableDebug -> Enable debug leds</b></p>
|
454 |
<p><b> uint8_t chSize -> Data bits</b></p>
|
455 |
<p><b> uint8_t stopBit -> How many stop bits</b></p>
|
456 |
<p><b> uint8_t parity -> Parity type (ODD, EVEN, DISABLED)</b></p>
|
457 |
<p><b>Don't forget to call sei() function after called all initPortx() functions !</p></b>
|
458 |
*/
|
459 |
void initPort1(uint32_t bauds, bool enableDebug, uint8_t chSize, bool stopBit, uint8_t parity) |
460 |
{ |
461 |
|
462 |
if(enableDebug)
|
463 |
PORTB.DIR = USART3_PORT_PINS | USART3_DEBUG_LED; //Set TX/RX IO and RX/TX debug leds for USART0
|
464 |
else
|
465 |
PORTB.DIR = USART3_PORT_PINS; //Set TX/RX IO
|
466 |
|
467 |
USART3.BAUD = bauds; |
468 |
USART3.CTRLA = 0x00; //disable RX complete interrupt |
469 |
USART3.CTRLB = 0xD0; //Enable TX and RX sending |
470 |
USART3.CTRLC = (parity << 4) | (stopBit << 3) | chSize; //set serial port cfg |
471 |
} |
472 |
|
473 |
|
474 |
|
475 |
/**
|
476 |
<p><b>void txWrite1(uint8_t b)</b></p>
|
477 |
<p><b>Write a byte throught VCOM1</b></p>
|
478 |
<p><b>Parameters : uint8_t b -> Byte to write</b></p>
|
479 |
*/
|
480 |
void txWrite1(uint8_t b) //Write one byte |
481 |
{ |
482 |
USART3.TXDATAL = b; |
483 |
_hasWritten[USART3_INDEX] = true;
|
484 |
while((USART3.STATUS & 0x40) != 0x40); //check when we transmit all the bits |
485 |
USART3.STATUS = 0x40; //clear the flag for next transmission |
486 |
} |
487 |
|
488 |
|
489 |
/**
|
490 |
<p><b>uint8_t rxRead1(void)</b></p>
|
491 |
<p><b>Read a byte from VCOM1</b></p>
|
492 |
<p><b>Return : uint8_t result -> Byte to read</b></p>
|
493 |
*/
|
494 |
uint8_t rxRead1(void) //Read one byte from buffer |
495 |
{ |
496 |
_hasRead[USART3_INDEX] = true;
|
497 |
return USART3.RXDATAL;
|
498 |
} |
499 |
|
500 |
|
501 |
/**
|
502 |
<p><b>uint16_t portAvailable1(void)</b></p>
|
503 |
<p><b>Get number of bytes available into the VCOM1 PORT's buffer</b></p>
|
504 |
<p><b>Return : uint16_t bytesAvailable -> Number of bytes</b></p>
|
505 |
*/
|
506 |
uint8_t portAvailable1(void)
|
507 |
{ |
508 |
return ((USART3.STATUS & 0x80) >> 7); |
509 |
} |
510 |
|
511 |
|
512 |
|
513 |
/*ISR(USART3_RXC_vect)
|
514 |
{
|
515 |
//while((USART0.RXDATAH & 0x80) == 0x80);
|
516 |
_RX1._rxReicv = USART3.RXDATAL; //read buffer
|
517 |
_RX1._rxBuf[_RX1.bytesAvailable] = _RX1._rxReicv; //Add one byte to the buffer
|
518 |
_RX1._rxReicv = 0x00; //clear value
|
519 |
if(_RX1.bytesAvailable < 255) //ensure not to overflow buffer size...
|
520 |
_RX1.bytesAvailable++; //a new byte is available into the buffer
|
521 |
//PORTA.OUT ^= 0x3; //debug led
|
522 |
|
523 |
_hasRead[USART3_INDEX] = true;
|
524 |
}
|
525 |
*/
|
526 |
|
527 |
/////////////////////////////////////////////////
|
528 |
//For Virtual port 2 (USART1)
|
529 |
|
530 |
|
531 |
/**
|
532 |
<p><b>void initPort2(uint32_t bauds)</b></p>
|
533 |
<p><b>Init MASTER PORT</b></p>
|
534 |
<p><b>Parameters : uint8_t bauds -> Set bauds speed</b></p>
|
535 |
<p><b> bool enableDebug -> Enable debug leds</b></p>
|
536 |
<p><b> uint8_t chSize -> Data bits</b></p>
|
537 |
<p><b> uint8_t stopBit -> How many stop bits</b></p>
|
538 |
<p><b> uint8_t parity -> Parity type (ODD, EVEN, DISABLED)</b></p>
|
539 |
<p><b>Don't forget to call sei() function after called all initPortx() functions !</p></b>
|
540 |
*/
|
541 |
void initPort2(uint32_t bauds, bool enableDebug, uint8_t chSize, bool stopBit, uint8_t parity) |
542 |
{ |
543 |
|
544 |
if(enableDebug)
|
545 |
PORTC.DIR = USART1_PORT_PINS | USART1_DEBUG_LED; //Set TX/RX IO and RX/TX debug leds for USART0
|
546 |
else
|
547 |
PORTC.DIR = USART1_PORT_PINS; //Set TX/RX IO
|
548 |
|
549 |
|
550 |
USART1.BAUD = bauds; |
551 |
USART1.CTRLA = 0x00; //enable RX complete interrupt |
552 |
USART1.CTRLB = 0xD0; //Enable TX and RX sending |
553 |
USART1.CTRLC = (parity << 4) | (stopBit << 3) | chSize; //set serial port cfg |
554 |
} |
555 |
|
556 |
|
557 |
|
558 |
/**
|
559 |
<p><b>void txWrite2(uint8_t b)</b></p>
|
560 |
<p><b>Write a byte throught VCOM2</b></p>
|
561 |
<p><b>Parameters : uint8_t b -> Byte to write</b></p>
|
562 |
*/
|
563 |
void txWrite2(uint8_t b) //Virtual Port 2 |
564 |
{ |
565 |
USART1.TXDATAL = b; |
566 |
_hasWritten[USART1_INDEX] = true;
|
567 |
while((USART1.STATUS & 0x40) != 0x40); //check when we transmit all the bits |
568 |
USART1.STATUS = 0x40; //clear the flag for next transmission |
569 |
} |
570 |
|
571 |
|
572 |
/**
|
573 |
<p><b>uint8_t rxRead2(void)</b></p>
|
574 |
<p><b>Read a byte from VCOM2</b></p>
|
575 |
<p><b>Return : uint8_t result -> Byte to read</b></p>
|
576 |
*/
|
577 |
uint8_t rxRead2(void) //Read one byte from buffer |
578 |
{ |
579 |
_hasRead[USART1_INDEX] = true;
|
580 |
return USART1.RXDATAL;
|
581 |
} |
582 |
|
583 |
|
584 |
/**
|
585 |
<p><b>uint16_t portAvailable2(void)</b></p>
|
586 |
<p><b>Get number of bytes available into the VCOM2 PORT's buffer</b></p>
|
587 |
<p><b>Return : uint16_t bytesAvailable -> Number of bytes</b></p>
|
588 |
*/
|
589 |
uint8_t portAvailable2(void)
|
590 |
{ |
591 |
return ((USART1.STATUS & 0x80) >> 7); |
592 |
} |
593 |
|
594 |
|
595 |
|
596 |
|
597 |
/*ISR(USART1_RXC_vect)
|
598 |
{
|
599 |
//while((USART0.RXDATAH & 0x80) == 0x80);
|
600 |
_RX2._rxReicv = USART1.RXDATAL; //read buffer
|
601 |
_RX2._rxBuf[_RX2.bytesAvailable] = _RX2._rxReicv; //Add one byte to the buffer
|
602 |
_RX2._rxReicv = 0x00; //clear value
|
603 |
if(_RX2.bytesAvailable < 255) //ensure not to overflow buffer size...
|
604 |
_RX2.bytesAvailable++; //a new byte is available into the buffer
|
605 |
//PORTA.OUT ^= 0x3; //debug led
|
606 |
_hasRead[USART1_INDEX] = true;
|
607 |
}
|
608 |
*/
|
609 |
/////////////////////////////////////////////////
|
610 |
//For Virtual port 3 (USART4)
|
611 |
|
612 |
|
613 |
/**
|
614 |
<p><b>void initPort3(uint32_t bauds)</b></p>
|
615 |
<p><b>Init MASTER PORT</b></p>
|
616 |
<p><b>Parameters : uint8_t bauds -> Set bauds speed</b></p>
|
617 |
<p><b> bool enableDebug -> Enable debug leds</b></p>
|
618 |
<p><b> uint8_t chSize -> Data bits</b></p>
|
619 |
<p><b> uint8_t stopBit -> How many stop bits</b></p>
|
620 |
<p><b> uint8_t parity -> Parity type (ODD, EVEN, DISABLED)</b></p>
|
621 |
<p><b>Don't forget to call sei() function after called all initPortx() functions !</p></b>
|
622 |
*/
|
623 |
void initPort3(uint32_t bauds, bool enableDebug, uint8_t chSize, bool stopBit, uint8_t parity) |
624 |
{ |
625 |
|
626 |
if(enableDebug)
|
627 |
PORTE.DIR = USART4_PORT_PINS | USART4_DEBUG_LED; //Set TX/RX IO and RX/TX debug leds for USART0
|
628 |
else
|
629 |
PORTE.DIR = USART4_PORT_PINS; //Set TX/RX IO
|
630 |
|
631 |
|
632 |
|
633 |
USART4.BAUD = bauds; |
634 |
USART4.CTRLA = 0x00; //enable RX complete interrupt |
635 |
USART4.CTRLB = 0xD0; //Enable TX and RX sending |
636 |
USART4.CTRLC = (parity << 4) | (stopBit << 3) | chSize; //set serial port cfg |
637 |
} |
638 |
|
639 |
|
640 |
|
641 |
/**
|
642 |
<p><b>void txWrite3(uint8_t b)</b></p>
|
643 |
<p><b>Write a byte throught VCOM3</b></p>
|
644 |
<p><b>Parameters : uint8_t b -> Byte to write</b></p>
|
645 |
*/
|
646 |
void txWrite3(uint8_t b) //Write one byte |
647 |
{ |
648 |
USART4.TXDATAL = b; |
649 |
_hasWritten[USART4_INDEX] = true;
|
650 |
while((USART4.STATUS & 0x40) != 0x40); //check when we transmit all the bits |
651 |
USART4.STATUS = 0x40; //clear the flag for next transmission |
652 |
} |
653 |
|
654 |
/**
|
655 |
<p><b>uint8_t rxRead3(void)</b></p>
|
656 |
<p><b>Read a byte from VCOM3</b></p>
|
657 |
<p><b>Return : uint8_t result -> Byte to read</b></p>
|
658 |
*/
|
659 |
uint8_t rxRead3(void) //Read one byte from buffer |
660 |
{ |
661 |
_hasRead[USART4_INDEX] = true;
|
662 |
return USART4.RXDATAL;
|
663 |
} |
664 |
|
665 |
|
666 |
/**
|
667 |
<p><b>uint16_t portAvailable3(void)</b></p>
|
668 |
<p><b>Get number of bytes available into the VCOM3 PORT's buffer</b></p>
|
669 |
<p><b>Return : uint16_t bytesAvailable -> Number of bytes</b></p>
|
670 |
*/
|
671 |
uint8_t portAvailable3(void)
|
672 |
{ |
673 |
return ((USART4.STATUS & 0x80) >> 7); |
674 |
} |
675 |
|
676 |
|
677 |
/*
|
678 |
ISR(USART4_RXC_vect)
|
679 |
{
|
680 |
//while((USART0.RXDATAH & 0x80) == 0x80);
|
681 |
_RX3._rxReicv = USART4.RXDATAL; //read buffer
|
682 |
_RX3._rxBuf[_RX3.bytesAvailable] = _RX3._rxReicv; //Add one byte to the buffer
|
683 |
_RX3._rxReicv = 0x00; //clear value
|
684 |
if(_RX3.bytesAvailable < 255) //ensure not to overflow buffer size...
|
685 |
_RX3.bytesAvailable++; //a new byte is available into the buffer
|
686 |
//PORTA.OUT ^= 0x3; //debug led
|
687 |
_hasRead[USART4_INDEX] = true;
|
688 |
}*/
|
689 |
|
690 |
|
691 |
|
692 |
|
693 |
|
694 |
|
695 |
/////////////////////////////////////////////////
|
696 |
//For Virtual port 4 (USART2)
|
697 |
|
698 |
|
699 |
/**
|
700 |
<p><b>void initPort4(uint32_t bauds)</b></p>
|
701 |
<p><b>Init MASTER PORT</b></p>
|
702 |
<p><b>Parameters : uint8_t bauds -> Set bauds speed</b></p>
|
703 |
<p><b> bool enableDebug -> Enable debug leds</b></p>
|
704 |
<p><b> uint8_t chSize -> Data bits</b></p>
|
705 |
<p><b> uint8_t stopBit -> How many stop bits</b></p>
|
706 |
<p><b> uint8_t parity -> Parity type (ODD, EVEN, DISABLED)</b></p>
|
707 |
<p><b>Don't forget to call sei() function after called all initPortx() functions !</p></b>
|
708 |
*/
|
709 |
void initPort4(uint32_t bauds, bool enableDebug, uint8_t chSize, bool stopBit, uint8_t parity) |
710 |
{ |
711 |
|
712 |
if(enableDebug)
|
713 |
PORTF.DIR = USART2_PORT_PINS | USART2_DEBUG_LED; //Set TX/RX IO and RX/TX debug leds for USART0
|
714 |
else
|
715 |
PORTF.DIR = USART2_PORT_PINS; //Set TX/RX IO
|
716 |
|
717 |
|
718 |
USART2.BAUD = bauds; |
719 |
USART2.CTRLA = 0x00; //enable RX complete interrupt |
720 |
USART2.CTRLB = 0xD0; //Enable TX and RX sending |
721 |
USART2.CTRLC = (parity << 4) | (stopBit << 3) | chSize; //set serial port cfg |
722 |
} |
723 |
|
724 |
|
725 |
|
726 |
/**
|
727 |
<p><b>void txWrite4(uint8_t b)</b></p>
|
728 |
<p><b>Write a byte throught VCOM4</b></p>
|
729 |
<p><b>Parameters : uint8_t b -> Byte to write</b></p>
|
730 |
*/
|
731 |
void txWrite4(uint8_t b) //Virtual Port 4 |
732 |
{ |
733 |
USART2.TXDATAL = b; |
734 |
_hasWritten[USART2_INDEX] = true;
|
735 |
while((USART2.STATUS & 0x40) != 0x40); //check when we transmit all the bits |
736 |
USART2.STATUS = 0x40; //clear the flag for next transmission |
737 |
} |
738 |
|
739 |
/**
|
740 |
<p><b>uint8_t rxRead4(void)</b></p>
|
741 |
<p><b>Read a byte from VCOM4</b></p>
|
742 |
<p><b>Return : uint8_t result -> Byte to read</b></p>
|
743 |
*/
|
744 |
uint8_t rxRead4(void) //Read one byte from buffer |
745 |
{ |
746 |
_hasRead[USART2_INDEX] = true;
|
747 |
return USART2.RXDATAL;
|
748 |
} |
749 |
|
750 |
|
751 |
/**
|
752 |
<p><b>uint16_t portAvailable4(void)</b></p>
|
753 |
<p><b>Get number of bytes available into the VCOM4 PORT's buffer</b></p>
|
754 |
<p><b>Return : uint16_t bytesAvailable -> Number of bytes</b></p>
|
755 |
*/
|
756 |
uint8_t portAvailable4(void)
|
757 |
{ |
758 |
return ((USART2.STATUS & 0x80) >> 7); |
759 |
} |
760 |
|
761 |
|
762 |
/*
|
763 |
ISR(USART2_RXC_vect)
|
764 |
{
|
765 |
//while((USART0.RXDATAH & 0x80) == 0x80);
|
766 |
_RX4._rxReicv = USART2.RXDATAL; //read buffer
|
767 |
_RX4._rxBuf[_RX4.bytesAvailable] = _RX4._rxReicv; //Add one byte to the buffer
|
768 |
_RX4._rxReicv = 0x00; //clear value
|
769 |
if(_RX4.bytesAvailable < 255) //ensure not to overflow buffer size...
|
770 |
_RX4.bytesAvailable++; //a new byte is available into the buffer
|
771 |
//PORTA.OUT ^= 0x3; //debug led
|
772 |
_hasRead[USART2_INDEX] = true;
|
773 |
}*/
|
774 |
|
775 |
#ifdef __cplusplus
|
776 |
} |
777 |
#endif /* __cplusplus */ |
778 |
|
779 |
#endif /* XC_HEADER_TEMPLATE_H */ |
780 |
|